Что такое SEO и кто такие оптимизаторы? Оптимизации это
Что такое SEO и кто такие оптимизаторы? виды оптимизации
Если вы уже приступили к созданию сайта или планируете реализовать собственный ресурс, вам придется усвоить довольно много информации, а также разобрать некоторые термины. Понятие SEO оптимизация является одним из главных для каждого вебмастера, т.к. чтобы придти к успеху, нужно не только разработать сайт и наполнить его данными, требуется настроить все параметры и сделать свою площадку качественной не только для посетителей, но и для поисковых систем.
Зачем оптимизировать ресурс? Дело в том, что грамотная оптимизация позволит вам выйти на первые позиции поисковой выдачи. Помимо этого, оптимизация предполагает работу над сайтом для предоставления некоторых удобств посетителям ресурса.
Что такое SEO оптимизация?
Многие пользователи интересуются, что такое SEO и кто такие оптимизаторы. Повышенный интерес к продвижению сайтов появился не просто так, дело в том, что на раскрученных сайтах можно неплохо зарабатывать. Что же такое SEO? Это настройка и установка различных элементов сайта, которые позволяют увеличить качество сайта. При этом качество ресурса будет увеличиваться с нескольких сторон:
- Увеличение эргономичности.
- Настройка расположения материалов.
- Добавление удобных инструментов (как для пользователей, так и для поисковиков).
- Настройка дизайна сайта.
- Создание качественного и интересного контента.
Конечно, это далеко не весь список критериев качества сайта, на который влияет правильная SEO оптимизация.
Методов оптимизации довольно много и в зависимости от желаемого результата вы можете использовать некоторые из них. Например, для продвижения сайта в поисковых системах, вам потребуется:
- Использовать ключевые слова.
- Установить карту сайта.
- Покупать ссылки.
- Стараться повлиять на поведенческие факторы (действия посетителей).
- Создавать контент с учетом некоторых правил.
Это и многое другое вам потребуется делать, чтобы сайт стал оптимизированным и являлся качественным.
Виды оптимизации
Существует 3 вида оптимизации – это серая, белая и черная SEO оптимизация. Названия видов в соответствии с цветами создано не просто так. Белая оптимизация – это разрешенные способы продвижения сайта (естественное наращивание ссылок, внутренняя перелинковка и т.д.).
Серая – это методы, которые не относятся к белым, но при этом могут стать причиной бана поисковых систем (покупка ссылок, ключевые слова и т.д.). Черная оптимизация – это запрещенные способы продвижения сайта, используя которые в большинстве случаев вебмастера получают отрицательные результаты. К ним можно отнести:
- Наполнение страниц скрытым текстом с высокой концентрацией ключевых слов.
- Использование дорвеев (дорвеи – это сайты, которые предназначены исключительно для перенаправления пользователей на основной ресурс).
- Клоакинг (метод, при котором поисковым системам представляется один вид страницы сайта, а пользователям другой).
- Свопинг (после того, как страница сайта проиндексирована и установлена в выдачу, её содержимое изменяется).
Данные методы черной оптимизации являются самыми распространенными. Используя их возможно вы сможете продвигать свой сайт, но это будет происходить лишь в начале. Когда поисковые системы определят, что вы пользуетесь черными методами, сайт попадет под фильтры.
Кто такие SEO оптимизаторы?
Исходя из этой информации, не сложно догадаться кто такие оптимизаторы. SEO оптимизаторы – это профессионалы по продвижению ресурсов, которые обладают огромным количеством информации и опыта. Среди фрилансеров также есть оптимизаторы, которые за определенную сумму могут заняться настройкой всех необходимых параметров для вашего ресурса.
Почему стоит воспользоваться их услугами? Дело в том, что допуская ошибки при оптимизации, некоторые методы могут привести вашу площадку к бану поисковых систем, а это будет означать, что один из главных источников трафика будет потерян.
Чтобы научиться SEO оптимизации можете приступать к длительному изучению информации, которая находится в интернете. Множество источников содержат данные о SEO, но помимо изучения информации составленной другими пользователями, старайтесь практиковать свои знания.
Читайте другие статьи:
my-wmmail.ru
Методы оптимизации - это... Что такое Методы оптимизации?
Математическое программирование — математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).
Формально, задача математического программирования формулируется так:
НайтиВ зависимости от природы множества X задачи математического программирования классифицируются как:
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
- Определение границ системы оптимизации
- Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
- Выбор управляемых переменных
- «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
- Определение ограничений на управляемые переменные
- … (равенства и\или неравенства)
- Выбор числового критерия оптимизации
- Создаём целевую функцию
История
Задачи линейного программирования были первыми, подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 г. Ж. Фурье и затем в 1947 г. Дж. Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.
Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Дж. Данцигом в 1949 г. для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях. Поэтому наименование «Математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.
Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 30-м годам ХХ столетия. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман, знаменитый математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя; советский академик, лауреат Нобелевской премии (1975 г.) Л. В. Канторович, сформулировавший ряд задач линейного программирования и предложивший (1939 г.) метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.
В 1931 г. венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».
Л. В. Канторовичем совместно с М. К. Гавуриным в 1949 г разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем. Методам линейного программирования посвящено много работ зарубежных ученых. В 1941 г. Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 г Дж. Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Г. Куна (англ.), А. Таккера (англ.), Гасса (Gass S. I.), Чарнеса (Charnes A.), Била (Beale E. M.) и др.
Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 г была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.
Начиная с 1955 г опубликовано много работ, посвященных квадратическому программированию (работы Била, Э. Баранкина (Barankin E.) и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Г. Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.
В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.
Литература
- Хемди А. Таха Введение в исследование операций = Operations Research: An Introduction. — 8 изд.. — М.: «Вильямс», 2007. — С. 912. — ISBN 0-13-032374-8
- А.Д. Плотников Математическое программирование = экспресс-курс. — 2006. — С. 171. — ISBN 985-475-186-4
Wikimedia Foundation. 2010.
ushakov.academic.ru
Что такое общая оптимизация и когда она нужна?
Любая поисковая система (для упрощения, мы будем вести речь о двух наиболее популярных поисковиках: Яндекси Google) – это постоянно развивающаяся система. Цель развития – обеспечить каждому посетителю максимально полезный и точный ответ на его поисковый запрос.
Подобное стремление обусловлено необходимостью выживания поисковика и привлечения новых пользователей, а с ними и рекламодателей.
Постоянное стремление поисковиков улучшать свою выдачу приводит к периодическим (от 2 недель до нескольких месяцев) изменениям в алгоритмах формирования ответов на запрос посетителя. Некоторые из изменений при этом существенно "перетряхивают" ТОП-10.
Однако, вместе с этим есть и постоянная составляющая в алгоритмах формирования выдачипоисковых систем, которая со времени почти не изменяется.
Чем же эта информация полезна нам?
А полезна она тем, что продвижение любого сайта всегда состоит из работы по двум направлениям:
- 1 Общая оптимизация сайта – работа с факторами, которые со временем почти не изменяются,
- 2 Продвижение в ТОП – работа с постоянно изменяющимися алгоритмами и поведением поисковых систем.
Теперь немного о том, что такое общая оптимизация и в каких случаях она нужна.
Общая оптимизация нужна в двух случаях:
- 1 Если возраст сайта, который необходимо продвигать менее 6 месяцев.
- 2 Если сайт содержит более 100 текстовых разделов, каждый из которых является отдельным товаром/услугой, которую могут искать потенциальные клиенты (обычно – это интернет-магазины, либо тематические порталы).
Какие работы выполняются при общей оптимизации
- 1 Работы по настройке/доработке CMS (системы управления сайтом) для нужд продвижения.
- 2 Работы по увеличению функционала сайта, повышающего его удобство для посетителей.
- 3 Работы по увеличению объема текстов на сайте, а также их уникализации.
- 4 Прописание или корректировка служебных полей (мета-тэгов).
Все работы направлены на то, чтобы сделать сайт более содержательным, удобным и при этом настроить его под ту часть алгоритмов работы поисковых систем, которые почти не изменяются.
Важно то, что проводимые при общей оптимизации работы позволяют наиболее естественным путем повысить привлекательность сайта для поисковых систем.
Отличительной особенностью общей оптимизации является то, что она не имеет гарантий по выходу сайта в ТОП и проводится обычно по НЧ-запросам (низкочастотным), которые являются самыми "продуктовыми" и эффективными с точки зрения конверсии.
Однако, как показывает практика работы наших оптимизаторов, даже при общей оптимизации порядка 80-90% фраз, под которые оптимизируется сайт, оказываются в ТОП-5 или ТОП-10 поисковиков через 2-4 мес. после проведения самих работ по оптимизации.
Особенности общей оптимизации
Любой вид привлечения клиентов в сети имеет свои преимущества и недостатки и только правильная комбинация методов продвижения (в широком смысле этого слова) позволяет усилить преимущества и плавно обойти имеющиеся недостатки.
Недостатки общей оптимизации:
- 1 Общую оптимизацию эффективно применять только для низкоконкурентных запросов (НЧ- и СЧ-запросы), которые могут выйти в ТОП без закупки ссылок.
- 2 Результаты от общей оптимизации проявляются немного позже, чем при продвижении в ТОП.
Преимущества общей оптимизации:
- 1 Результаты общей оптимизации могут держать сайт в ТОП-е до нескольких лет без дополнительных действий. Т.е. оплата за каждую фразу при общей оптимизации является разовой, в отличие от ежемесячных платежей при продвижении.
- 2 Общая оптимизация позволяет неограниченно увеличивать посещаемость сайта (разумеется, в пределах информационного спроса), за счет того, что сайт каждый месяц оптимизируется под новые запросы. При этом, ежемесячный платеж фиксирован и не увеличивается. Продвижение сайта - всегда имеет предел посещаемости, который обсуловлен постоянством списка продвигаемых фраз и и их суммарной частотностью.
- 3 При общей оптимизации стоимость привлекаемого посетителя постоянно снижается стремясь к нулю, при том что стоимость посетителя при продвижении – увеличивается, за счет ежемесячной оплаты за привлечение посетителей по одним и тем же фразам.
- 4 Общая оптимизация – наиболее естественный способ повышения видимости сайта поисковыми системами.
Вывод:
Общая оптимизация – очень эффективный инструмент привлечения клиентов и постоянного повышения посещаемости сайтов. Она может использоваться как самостоятельный способ привлечения клиентов, так и в комплексе с продвижением, медийной или контекстной рекламой.
Единственное чего не следует делать – ждать результатов от общей оптимизации по высококонкурентым запросам, нуждающимся в обязательной закупке ссылок.
Уфимцев Алексей 25.05.2012
promo-sa.ru
Методы оптимизации - это... Что такое Методы оптимизации?
Математическое программирование — математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).
Формально, задача математического программирования формулируется так:
НайтиВ зависимости от природы множества X задачи математического программирования классифицируются как:
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
- Определение границ системы оптимизации
- Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
- Выбор управляемых переменных
- «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
- Определение ограничений на управляемые переменные
- … (равенства и\или неравенства)
- Выбор числового критерия оптимизации
- Создаём целевую функцию
История
Задачи линейного программирования были первыми, подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 г. Ж. Фурье и затем в 1947 г. Дж. Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.
Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Дж. Данцигом в 1949 г. для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях. Поэтому наименование «Математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.
Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 30-м годам ХХ столетия. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман, знаменитый математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя; советский академик, лауреат Нобелевской премии (1975 г.) Л. В. Канторович, сформулировавший ряд задач линейного программирования и предложивший (1939 г.) метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.
В 1931 г. венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».
Л. В. Канторовичем совместно с М. К. Гавуриным в 1949 г разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем. Методам линейного программирования посвящено много работ зарубежных ученых. В 1941 г. Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 г Дж. Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Г. Куна (англ.), А. Таккера (англ.), Гасса (Gass S. I.), Чарнеса (Charnes A.), Била (Beale E. M.) и др.
Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 г была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.
Начиная с 1955 г опубликовано много работ, посвященных квадратическому программированию (работы Била, Э. Баранкина (Barankin E.) и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Г. Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.
В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.
Литература
- Хемди А. Таха Введение в исследование операций = Operations Research: An Introduction. — 8 изд.. — М.: «Вильямс», 2007. — С. 912. — ISBN 0-13-032374-8
- А.Д. Плотников Математическое программирование = экспресс-курс. — 2006. — С. 171. — ISBN 985-475-186-4
Wikimedia Foundation. 2010.
dal.academic.ru
Методы оптимизации - это... Что такое Методы оптимизации?
Математическое программирование — математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).
Формально, задача математического программирования формулируется так:
НайтиВ зависимости от природы множества X задачи математического программирования классифицируются как:
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
- Определение границ системы оптимизации
- Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
- Выбор управляемых переменных
- «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
- Определение ограничений на управляемые переменные
- … (равенства и\или неравенства)
- Выбор числового критерия оптимизации
- Создаём целевую функцию
История
Задачи линейного программирования были первыми, подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 г. Ж. Фурье и затем в 1947 г. Дж. Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.
Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Дж. Данцигом в 1949 г. для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях. Поэтому наименование «Математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.
Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 30-м годам ХХ столетия. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман, знаменитый математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя; советский академик, лауреат Нобелевской премии (1975 г.) Л. В. Канторович, сформулировавший ряд задач линейного программирования и предложивший (1939 г.) метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.
В 1931 г. венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».
Л. В. Канторовичем совместно с М. К. Гавуриным в 1949 г разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем. Методам линейного программирования посвящено много работ зарубежных ученых. В 1941 г. Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 г Дж. Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Г. Куна (англ.), А. Таккера (англ.), Гасса (Gass S. I.), Чарнеса (Charnes A.), Била (Beale E. M.) и др.
Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 г была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.
Начиная с 1955 г опубликовано много работ, посвященных квадратическому программированию (работы Била, Э. Баранкина (Barankin E.) и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Г. Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.
В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.
Литература
- Хемди А. Таха Введение в исследование операций = Operations Research: An Introduction. — 8 изд.. — М.: «Вильямс», 2007. — С. 912. — ISBN 0-13-032374-8
- А.Д. Плотников Математическое программирование = экспресс-курс. — 2006. — С. 171. — ISBN 985-475-186-4
Wikimedia Foundation. 2010.
veter.academic.ru
Методы оптимизации - это... Что такое Методы оптимизации?
Математическое программирование — математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).
Формально, задача математического программирования формулируется так:
НайтиВ зависимости от природы множества X задачи математического программирования классифицируются как:
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
- Определение границ системы оптимизации
- Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
- Выбор управляемых переменных
- «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
- Определение ограничений на управляемые переменные
- … (равенства и\или неравенства)
- Выбор числового критерия оптимизации
- Создаём целевую функцию
История
Задачи линейного программирования были первыми, подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 г. Ж. Фурье и затем в 1947 г. Дж. Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.
Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Дж. Данцигом в 1949 г. для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях. Поэтому наименование «Математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.
Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 30-м годам ХХ столетия. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман, знаменитый математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя; советский академик, лауреат Нобелевской премии (1975 г.) Л. В. Канторович, сформулировавший ряд задач линейного программирования и предложивший (1939 г.) метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.
В 1931 г. венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».
Л. В. Канторовичем совместно с М. К. Гавуриным в 1949 г разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем. Методам линейного программирования посвящено много работ зарубежных ученых. В 1941 г. Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 г Дж. Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Г. Куна (англ.), А. Таккера (англ.), Гасса (Gass S. I.), Чарнеса (Charnes A.), Била (Beale E. M.) и др.
Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 г была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.
Начиная с 1955 г опубликовано много работ, посвященных квадратическому программированию (работы Била, Э. Баранкина (Barankin E.) и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Г. Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.
В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.
Литература
- Хемди А. Таха Введение в исследование операций = Operations Research: An Introduction. — 8 изд.. — М.: «Вильямс», 2007. — С. 912. — ISBN 0-13-032374-8
- А.Д. Плотников Математическое программирование = экспресс-курс. — 2006. — С. 171. — ISBN 985-475-186-4
Wikimedia Foundation. 2010.
med.academic.ru
Методы оптимизации - это... Что такое Методы оптимизации?
Математическое программирование — математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).
Формально, задача математического программирования формулируется так:
НайтиВ зависимости от природы множества X задачи математического программирования классифицируются как:
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование. Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
- Определение границ системы оптимизации
- Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
- Выбор управляемых переменных
- «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
- Определение ограничений на управляемые переменные
- … (равенства и\или неравенства)
- Выбор числового критерия оптимизации
- Создаём целевую функцию
История
Задачи линейного программирования были первыми, подробно изученными задачами поиска экстремума функций при наличии ограничений типа неравенств. В 1820 г. Ж. Фурье и затем в 1947 г. Дж. Данциг предложил метод направленного перебора смежных вершин в направлении возрастания целевой функции — симплекс-метод, ставший основным при решении задач линейного программирования.
Присутствие в названии дисциплины термина «программирование» объясняется тем, что первые исследования и первые приложения линейных оптимизационных задач были в сфере экономики, так как в английском языке слово «programming» означает планирование, составление планов или программ. Вполне естественно, что терминология отражает тесную связь, существующую между математической постановкой задачи и её экономической интерпретацией (изучение оптимальной экономической программы). Термин «линейное программирование» был предложен Дж. Данцигом в 1949 г. для изучения теоретических и алгоритмических задач, связанных с оптимизацией линейных функций при линейных ограничениях. Поэтому наименование «Математическое программирование» связано с тем, что целью решения задач является выбор оптимальной программы действий.
Выделение класса экстремальных задач, определяемых линейным функционалом на множестве, задаваемом линейными ограничениями, следует отнести к 30-м годам ХХ столетия. Одними из первых, исследовавшими в общей форме задачи линейного программирования, были: Джон фон Нейман, знаменитый математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, носящую его имя; советский академик, лауреат Нобелевской премии (1975 г.) Л. В. Канторович, сформулировавший ряд задач линейного программирования и предложивший (1939 г.) метод их решения (метод разрешающих множителей), незначительно отличающийся от симплекс-метода.
В 1931 г. венгерский математик Б. Эгервари рассмотрел математическую постановку и решил задачу линейного программирования, имеющую название «проблема выбора», метод решения получил название «венгерского метода».
Л. В. Канторовичем совместно с М. К. Гавуриным в 1949 г разработан метод потенциалов, который применяется при решении транспортных задач. В последующих работах Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования, так и приложение её методов к исследованию различных экономических проблем. Методам линейного программирования посвящено много работ зарубежных ученых. В 1941 г. Ф. Л. Хитчкок поставил транспортную задачу. Основной метод решения задач линейного программирования — симплекс-метод — был опубликован в 1949 г Дж. Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Г. Куна (англ.), А. Таккера (англ.), Гасса (Gass S. I.), Чарнеса (Charnes A.), Била (Beale E. M.) и др.
Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция, либо ограничения, либо то и другое нелинейны. В 1951 г была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.
Начиная с 1955 г опубликовано много работ, посвященных квадратическому программированию (работы Била, Э. Баранкина (Barankin E.) и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Г. Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.
В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.
Литература
- Хемди А. Таха Введение в исследование операций = Operations Research: An Introduction. — 8 изд.. — М.: «Вильямс», 2007. — С. 912. — ISBN 0-13-032374-8
- А.Д. Плотников Математическое программирование = экспресс-курс. — 2006. — С. 171. — ISBN 985-475-186-4
Wikimedia Foundation. 2010.
biograf.academic.ru