Метод Ньютона. Метод ньютона методы оптимизации


Метод Ньютона Википедия

У этого термина существуют и другие значения, см. Метод (значения).

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.

Содержание

Описание метода[ | код]

Обоснование[ | код]

Чтобы численно решить уравнение f(x)=0{\displaystyle f(x)=0} методом простой итерации, его необходимо привести к эквивалентному уравнению: x=φ(x){\displaystyle x=\varphi (x)}, где φ{\displaystyle \varphi } — сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения x∗{\displaystyle x^{*}} должно выполняться условие φ′(x∗)=0{\displaystyle \varphi '(x^{*})=0}. Решение данного уравнения ищут в виде φ(x)=x+α(x)f(

ru-wiki.ru

WikiZero - Метод Ньютона

open wikipedia design.

У этого термина существуют и другие значения, см. Метод (значения).

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.

Содержание

Описание метода

Обоснование

Чтобы численно решить уравнение f(x)=0{\displaystyle f(x)=0} методом простой итерации, его необходимо привести к эквивалентному уравнению:

www.wikizero.com

Метод Ньютона - это... Что такое Метод Ньютона?

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.

Описание метода

Обоснование

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к следующей форме: , где  — сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение[1], и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

По теореме Банаха последовательность приближений стремится к корню уравнения .

Геометрическая интерпретация

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Пусть  — определённая на отрезке и дифференцируемая на нём вещественнозначная функция. Тогда формула итеративного исчисления приближений может быть выведена следующим образом:

где  — угол наклона касательной в точке .

Следовательно искомое выражение для имеет вид:

Итерационный процесс начинается с некоего начального приближения (чем ближе к нулю, тем лучше, но если предположения о нахождении решения отсутствуют, методом проб и ошибок можно сузить область возможных значений, применив теорему о промежуточных значениях).

Алгоритм

  1. Задается начальное приближение .
  2. Пока не выполнено условие остановки, в качестве которого можно взять или (то есть погрешность в нужных пределах), вычисляют новое приближение: .

Пример

Рассмотрим задачу о нахождении положительных , для которых . Эта задача может быть представлена как задача нахождения нуля функции . Имеем выражение для производной . Так как для всех и для , очевидно, что решение лежит между 0 и 1. Возьмём в качестве начального приближения значение , тогда:

Подчёркиванием отмечены верные значащие цифры. Видно, что их количество от шага к шагу растёт (приблизительно удваиваясь с каждым шагом): от 1 к 2, от 2 к 5, от 5 к 10, иллюстрируя квадратичную скорость сходимости.

Условия применения

Иллюстрация расхождения метода Ньютона, применённого к функции с начальным приближением в точке .

Рассмотрим ряд примеров, указывающих на недостатки метода.

Контрпримеры

Пусть

Тогда

Возьмём нуль в качестве начального приближения. Первая итерация даст в качестве приближения единицу. В свою очередь, вторая снова даст нуль. Метод зациклится и решение не будет найдено. В общем случае построение последовательности приближений может быть очень запутанным.

График производной функции при приближении к нулю справа.

Рассмотрим функцию:

Тогда и всюду, кроме 0.

В окрестности корня производная меняет знак при приближении к нулю справа или слева. В то время, как для .

Таким образом не ограничено вблизи корня, и метод будет расходиться, хотя функция всюду дифференцируема, её производная не равна нулю в корне, бесконечно дифференцируема везде, кроме как в корне, а её производная ограничена в окрестности корня.

Рассмотрим пример:

Тогда и за исключением , где она не определена.

На очередном шаге имеем :

Скорость сходимости полученной последовательности составляет приблизительно 4/3. Это существенно меньше, нежели 2, необходимое для квадратичной сходимости, поэтому в данном случае можно говорить лишь о линейной сходимости, хотя функция всюду непрерывно дифференцируема, производная в корне не равна нулю, и бесконечно дифференцируема везде, кроме как в корне.

Пусть

Тогда и следовательно . Таким образом сходимость метода не квадратичная, а линейная, хотя функция всюду бесконечно дифференцируема.

Ограничения

Пусть задано уравнение , где и надо найти его решение.

Ниже приведена формулировка основной теоремы, которая позволяет дать чёткие условия применимости. Она носит имя советского математика и экономиста Леонида Витальевича Канторовича (1912—1986).

Теорема Канторовича.

Если существуют такие константы , что:

  1. на , то есть существует и не равна нулю;
  2. на , то есть ограничена;
  3. на , и ;

Причём длина рассматриваемого отрезка . Тогда справедливы следующие утверждения:

  1. на существует корень уравнения ;
  2. если , то итерационная последовательность сходится к этому корню: ;
  3. погрешность может быть оценена по формуле .

Из последнего из утверждений теоремы в частности следует квадратичная сходимость метода:

Тогда ограничения на исходную функцию будут выглядеть так:

  1. функция должна быть ограничена;
  2. функция должна быть гладкой, дважды дифференцируемой;
  3. её первая производная равномерно отделена от нуля;
  4. её вторая производная должна быть равномерно ограничена.

Историческая справка

Метод был описан Исааком Ньютоном в рукописи «Об анализе уравнениями бесконечных рядов» (лат. «De analysi per aequationes numero terminorum infinitas»), адресованной в 1669 году Барроу, и в работе «Метод флюксий и бесконечные ряды» (лат. «De metodis fluxionum et serierum infinitarum») или «Аналитическая геометрия» (лат. «Geometria analytica») в собраниях трудов Ньютона, которая была написана в 1671 году. В своих работах Ньютон вводит такие понятия, как разложение функции в ряд, бесконечно малые и флюксии (производные в нынешнем понимании). Указанные работы были изданы значительно позднее: первая вышла в свет в 1711 году благодаря Уильяму Джонсону, вторая была издана Джоном Кользоном в 1736 году уже после смерти создателя. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения , а последовательность полиномов и в результате получал приближённое решение .

Впервые метод был опубликован в трактате «Алгебра» Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе «Общий анализ уравнений» (лат. «Analysis aequationum universalis»). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений вместо более трудной для понимания последовательности полиномов, использованной Ньютоном. Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В 1879 году Артур Кэли в работе «Проблема комплексных чисел Ньютона — Фурье» (англ. «The Newton-Fourier imaginary problem») был первым, кто отметил трудности в обобщении метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов.

Обобщения и модификации

Иллюстрация последовательных приближений метода одной касательной, применённого к функции с начальным приближением в точке .

Метод одной касательной

В целях уменьшения числа обращений к значениям производной функции применяют так называемый метод одной касательной.

Формула итераций этого метода имеет вид:

Суть метода заключается в том, чтобы вычислять производную лишь один раз, в точке начального приближения , а затем использовать это значение на каждой последующей итерации:

При таком выборе в точке выполнено равенство:

и если отрезок, на котором предполагается наличие корня и выбрано начальное приближение , достаточно мал, а производная непрерывна, то значение будет не сильно отличаться от и, следовательно, график пройдёт почти горизонтально, пересекая прямую , что в свою очередь обеспечит быструю сходимость последовательности точек приближений к корню.

Этот метод можно также рассматривать, как модернизацию метода хорд (секущих), где число следует выбрать равным

Многомерный случай

Обобщим полученный результат на многомерный случай.

Пусть необходимо найти решение системы:

Выбирая некоторое начальное значение , последовательные приближения находят путём решения систем уравнений:

где .

Применительно к задачам оптимизации

Пусть необходимо найти минимум функции многих переменных . Эта задача равносильна задаче нахождения нуля градиента . Применим изложенный выше метод Ньютона:

где  — гессиан функции .

В более удобном итеративном виде это выражение выглядит так:

Следует отметить, что в случае квадратичной функции метод Ньютона находит экстремум за одну итерацию.

Нахождение матрицы Гессе связано с большими вычислительными затратами, и зачастую не представляется возможным. В таких случаях альтернативой могут служить квазиньютоновские методы, в которых приближение матрицы Гессе строится в процессе накопления информации о кривизне функции.

Метод Ньютона — Рафсона

Метод Ньютона — Рафсона является улучшением метода Ньютона нахождения экстремума, описанного выше. Основное отличие заключается в том, что на очередной итерации каким-либо из методов одномерной оптимизации выбирается оптимальный шаг:

где Для оптимизации вычислений применяют следующее улучшение: вместо того, чтобы на каждой итерации заново вычислять гессиан целевой функции, ограничиваются начальным приближением и обновляют его лишь раз в шагов, либо не обновляют вовсе.

Применительно к задачам о наименьших квадратах

На практике часто встречаются задачи, в которых требуется произвести настройку свободных параметров объекта или подогнать математическую модель под реальные данные. В этих случаях появляются задачи о наименьших квадратах:

Эти задачи отличаются особым видом градиента и матрицы Гессе:

где  — матрица Якоби вектор-функции ,  — матрица Гессе для её компоненты .

Тогда очередное направление определяется из системы:

Метод Гаусса — Ньютона

Метод Гаусса — Ньютона строится на предположении о том, что слагаемое доминирует над . Это требование не соблюдается, если минимальные невязки велики, то есть если норма сравнима с максимальным собственным значением матрицы . В противном случае можно записать:

Таким образом, когда норма близка к нулю, а матрица имеет полный столбцевой ранг, направление мало отличается от ньютоновского (с учётом ), и метод может достигать квадратичной скорости сходимости, хотя вторые производные и не учитываются. Улучшением метода является алгоритм Левенберга — Марквардта, основанный на эвристических соображениях.

Обобщение на комплексную плоскость

Бассейны Ньютона для полинома пятой степени . Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.

До сих пор в описании метода использовались функции, осуществляющие отображения в пределах множества вещественных значений. Однако метод может быть применён и для нахождения нуля функции комплексного переменного. При этом процедура остаётся неизменной:

Особый интерес представляет выбор начального приближения . Ввиду того, что функция может иметь несколько нулей, в различных случаях метод может сходиться к различным значениям, и вполне естественно возникает желание выяснить, какие области обеспечат сходимость к тому или иному корню. Этот вопрос заинтересовал Артура Кейли ещё в 1879 году, однако разрешить его смогли лишь в 70-х годах двадцатого столетия с появлением вычислительной техники. Оказалось, что на пересечениях этих областей (их принято называть областями притяжения) образуются так называемые фракталы — бесконечные самоподобные геометрические фигуры.

Ввиду того, что Ньютон применял свой метод исключительно к полиномам, фракталы, образованные в результате такого применения, обрели название фракталов Ньютона или бассейнов Ньютона.

Литература

  1. Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. — М.: Высш. шк., 1986.
  2. Амосов А. А., Дубинский Ю. А., Копченова Н. П. Вычислительные методы для инженеров. — М.: Мир, 1998.
  3. Бахвалов Н. С., Жидков Н. П., Кобельков Г. Г. Численные методы. — 8-е изд.. — М.: Лаборатория Базовых Знаний, 2000.
  4. Вавилов С. И. Исаак Ньютон. — М.: Изд. АН СССР, 1945.
  5. Волков Е. А. Численные методы. — М.: Физматлит, 2003.
  6. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.
  8. Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. — Энергоатомиздат, 1972.
  9. Максимов Ю. А.,Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
  10. Морозов А. Д. Введение в теорию фракталов. — МИФИ, 2002.

Примечания

См. также

Ссылки

med.academic.ru

Метод Ньютона - это... Что такое Метод Ньютона?

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.

Описание метода

Обоснование

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к следующей форме: , где  — сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение[1], и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

По теореме Банаха последовательность приближений стремится к корню уравнения .

Геометрическая интерпретация

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Пусть  — определённая на отрезке и дифференцируемая на нём вещественнозначная функция. Тогда формула итеративного исчисления приближений может быть выведена следующим образом:

где  — угол наклона касательной в точке .

Следовательно искомое выражение для имеет вид:

Итерационный процесс начинается с некоего начального приближения (чем ближе к нулю, тем лучше, но если предположения о нахождении решения отсутствуют, методом проб и ошибок можно сузить область возможных значений, применив теорему о промежуточных значениях).

Алгоритм

  1. Задается начальное приближение .
  2. Пока не выполнено условие остановки, в качестве которого можно взять или (то есть погрешность в нужных пределах), вычисляют новое приближение: .

Пример

Рассмотрим задачу о нахождении положительных , для которых . Эта задача может быть представлена как задача нахождения нуля функции . Имеем выражение для производной . Так как для всех и для , очевидно, что решение лежит между 0 и 1. Возьмём в качестве начального приближения значение , тогда:

Подчёркиванием отмечены верные значащие цифры. Видно, что их количество от шага к шагу растёт (приблизительно удваиваясь с каждым шагом): от 1 к 2, от 2 к 5, от 5 к 10, иллюстрируя квадратичную скорость сходимости.

Условия применения

Иллюстрация расхождения метода Ньютона, применённого к функции с начальным приближением в точке .

Рассмотрим ряд примеров, указывающих на недостатки метода.

Контрпримеры

Пусть

Тогда

Возьмём нуль в качестве начального приближения. Первая итерация даст в качестве приближения единицу. В свою очередь, вторая снова даст нуль. Метод зациклится и решение не будет найдено. В общем случае построение последовательности приближений может быть очень запутанным.

График производной функции при приближении к нулю справа.

Рассмотрим функцию:

Тогда и всюду, кроме 0.

В окрестности корня производная меняет знак при приближении к нулю справа или слева. В то время, как для .

Таким образом не ограничено вблизи корня, и метод будет расходиться, хотя функция всюду дифференцируема, её производная не равна нулю в корне, бесконечно дифференцируема везде, кроме как в корне, а её производная ограничена в окрестности корня.

Рассмотрим пример:

Тогда и за исключением , где она не определена.

На очередном шаге имеем :

Скорость сходимости полученной последовательности составляет приблизительно 4/3. Это существенно меньше, нежели 2, необходимое для квадратичной сходимости, поэтому в данном случае можно говорить лишь о линейной сходимости, хотя функция всюду непрерывно дифференцируема, производная в корне не равна нулю, и бесконечно дифференцируема везде, кроме как в корне.

Пусть

Тогда и следовательно . Таким образом сходимость метода не квадратичная, а линейная, хотя функция всюду бесконечно дифференцируема.

Ограничения

Пусть задано уравнение , где и надо найти его решение.

Ниже приведена формулировка основной теоремы, которая позволяет дать чёткие условия применимости. Она носит имя советского математика и экономиста Леонида Витальевича Канторовича (1912—1986).

Теорема Канторовича.

Если существуют такие константы , что:

  1. на , то есть существует и не равна нулю;
  2. на , то есть ограничена;
  3. на , и ;

Причём длина рассматриваемого отрезка . Тогда справедливы следующие утверждения:

  1. на существует корень уравнения ;
  2. если , то итерационная последовательность сходится к этому корню: ;
  3. погрешность может быть оценена по формуле .

Из последнего из утверждений теоремы в частности следует квадратичная сходимость метода:

Тогда ограничения на исходную функцию будут выглядеть так:

  1. функция должна быть ограничена;
  2. функция должна быть гладкой, дважды дифференцируемой;
  3. её первая производная равномерно отделена от нуля;
  4. её вторая производная должна быть равномерно ограничена.

Историческая справка

Метод был описан Исааком Ньютоном в рукописи «Об анализе уравнениями бесконечных рядов» (лат. «De analysi per aequationes numero terminorum infinitas»), адресованной в 1669 году Барроу, и в работе «Метод флюксий и бесконечные ряды» (лат. «De metodis fluxionum et serierum infinitarum») или «Аналитическая геометрия» (лат. «Geometria analytica») в собраниях трудов Ньютона, которая была написана в 1671 году. В своих работах Ньютон вводит такие понятия, как разложение функции в ряд, бесконечно малые и флюксии (производные в нынешнем понимании). Указанные работы были изданы значительно позднее: первая вышла в свет в 1711 году благодаря Уильяму Джонсону, вторая была издана Джоном Кользоном в 1736 году уже после смерти создателя. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения , а последовательность полиномов и в результате получал приближённое решение .

Впервые метод был опубликован в трактате «Алгебра» Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе «Общий анализ уравнений» (лат. «Analysis aequationum universalis»). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений вместо более трудной для понимания последовательности полиномов, использованной Ньютоном. Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В 1879 году Артур Кэли в работе «Проблема комплексных чисел Ньютона — Фурье» (англ. «The Newton-Fourier imaginary problem») был первым, кто отметил трудности в обобщении метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов.

Обобщения и модификации

Иллюстрация последовательных приближений метода одной касательной, применённого к функции с начальным приближением в точке .

Метод одной касательной

В целях уменьшения числа обращений к значениям производной функции применяют так называемый метод одной касательной.

Формула итераций этого метода имеет вид:

Суть метода заключается в том, чтобы вычислять производную лишь один раз, в точке начального приближения , а затем использовать это значение на каждой последующей итерации:

При таком выборе в точке выполнено равенство:

и если отрезок, на котором предполагается наличие корня и выбрано начальное приближение , достаточно мал, а производная непрерывна, то значение будет не сильно отличаться от и, следовательно, график пройдёт почти горизонтально, пересекая прямую , что в свою очередь обеспечит быструю сходимость последовательности точек приближений к корню.

Этот метод можно также рассматривать, как модернизацию метода хорд (секущих), где число следует выбрать равным

Многомерный случай

Обобщим полученный результат на многомерный случай.

Пусть необходимо найти решение системы:

Выбирая некоторое начальное значение , последовательные приближения находят путём решения систем уравнений:

где .

Применительно к задачам оптимизации

Пусть необходимо найти минимум функции многих переменных . Эта задача равносильна задаче нахождения нуля градиента . Применим изложенный выше метод Ньютона:

где  — гессиан функции .

В более удобном итеративном виде это выражение выглядит так:

Следует отметить, что в случае квадратичной функции метод Ньютона находит экстремум за одну итерацию.

Нахождение матрицы Гессе связано с большими вычислительными затратами, и зачастую не представляется возможным. В таких случаях альтернативой могут служить квазиньютоновские методы, в которых приближение матрицы Гессе строится в процессе накопления информации о кривизне функции.

Метод Ньютона — Рафсона

Метод Ньютона — Рафсона является улучшением метода Ньютона нахождения экстремума, описанного выше. Основное отличие заключается в том, что на очередной итерации каким-либо из методов одномерной оптимизации выбирается оптимальный шаг:

где Для оптимизации вычислений применяют следующее улучшение: вместо того, чтобы на каждой итерации заново вычислять гессиан целевой функции, ограничиваются начальным приближением и обновляют его лишь раз в шагов, либо не обновляют вовсе.

Применительно к задачам о наименьших квадратах

На практике часто встречаются задачи, в которых требуется произвести настройку свободных параметров объекта или подогнать математическую модель под реальные данные. В этих случаях появляются задачи о наименьших квадратах:

Эти задачи отличаются особым видом градиента и матрицы Гессе:

где  — матрица Якоби вектор-функции ,  — матрица Гессе для её компоненты .

Тогда очередное направление определяется из системы:

Метод Гаусса — Ньютона

Метод Гаусса — Ньютона строится на предположении о том, что слагаемое доминирует над . Это требование не соблюдается, если минимальные невязки велики, то есть если норма сравнима с максимальным собственным значением матрицы . В противном случае можно записать:

Таким образом, когда норма близка к нулю, а матрица имеет полный столбцевой ранг, направление мало отличается от ньютоновского (с учётом ), и метод может достигать квадратичной скорости сходимости, хотя вторые производные и не учитываются. Улучшением метода является алгоритм Левенберга — Марквардта, основанный на эвристических соображениях.

Обобщение на комплексную плоскость

Бассейны Ньютона для полинома пятой степени . Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.

До сих пор в описании метода использовались функции, осуществляющие отображения в пределах множества вещественных значений. Однако метод может быть применён и для нахождения нуля функции комплексного переменного. При этом процедура остаётся неизменной:

Особый интерес представляет выбор начального приближения . Ввиду того, что функция может иметь несколько нулей, в различных случаях метод может сходиться к различным значениям, и вполне естественно возникает желание выяснить, какие области обеспечат сходимость к тому или иному корню. Этот вопрос заинтересовал Артура Кейли ещё в 1879 году, однако разрешить его смогли лишь в 70-х годах двадцатого столетия с появлением вычислительной техники. Оказалось, что на пересечениях этих областей (их принято называть областями притяжения) образуются так называемые фракталы — бесконечные самоподобные геометрические фигуры.

Ввиду того, что Ньютон применял свой метод исключительно к полиномам, фракталы, образованные в результате такого применения, обрели название фракталов Ньютона или бассейнов Ньютона.

Литература

  1. Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. — М.: Высш. шк., 1986.
  2. Амосов А. А., Дубинский Ю. А., Копченова Н. П. Вычислительные методы для инженеров. — М.: Мир, 1998.
  3. Бахвалов Н. С., Жидков Н. П., Кобельков Г. Г. Численные методы. — 8-е изд.. — М.: Лаборатория Базовых Знаний, 2000.
  4. Вавилов С. И. Исаак Ньютон. — М.: Изд. АН СССР, 1945.
  5. Волков Е. А. Численные методы. — М.: Физматлит, 2003.
  6. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.
  8. Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. — Энергоатомиздат, 1972.
  9. Максимов Ю. А.,Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
  10. Морозов А. Д. Введение в теорию фракталов. — МИФИ, 2002.

Примечания

См. также

Ссылки

dis.academic.ru


Prostoy-Site | Все права защищены © 2018 | Карта сайта