Комбинаторная оптимизация. Комбинаторная оптимизация


Комбинаторная оптимизация — Википедия

Материал из Википедии — свободной энциклопедии

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Видео по теме

Методы

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также

Математическое программирование

Литература

Примечания

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

wikipedia.green

Комбинаторная оптимизация Википедия

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Методы

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также

Математическое программирование

Литература

Примечания

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

wikiredia.ru

Комбинаторная оптимизация — Википедия. Что такое Комбинаторная оптимизация

Статья из Википедии — свободной энциклопедии

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Методы

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также

Математическое программирование

Литература

Примечания

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

wiki.sc

Комбинаторная оптимизация Википедия

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения[ | код]

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Методы[ | код]

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи[ | код]

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также[

ru-wiki.ru

Комбинаторная оптимизация - Gpedia, Your Encyclopedia

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Методы

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также

Математическое программирование

Литература

Примечания

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

www.gpedia.com

Комбинаторная оптимизация — Википедия

Материал из Википедии — свободной энциклопедии

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

Математическое программирование

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

ru.wikiyy.com

Комбинаторная оптимизация Вики

Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов[1], чем очень похожа на дискретное программирование. Некоторые источники [2] под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.

Во многих задачах комбинаторной оптимизации полный перебор нереален. Комбинаторная оптимизация включает в себя задачи оптимизации, в которых множество допустимых решений дискретно или может быть сведено к дискретному множеству.

Приложения[ | код]

Комбинаторная оптимизация используется при:

Однако этими примерами приложение комбинаторной оптимизации не ограничивается.

Методы[ | код]

Имеется большое число литературы по полиномиальным по времени алгоритмам, работающим на некоторых классах задач дискретного программирования и существенная часть этих алгоритмов принадлежит теории линейного программирования. Некоторые примеры комбинаторной оптимизации, попадающие в эту область — это задача поиска кратчайшего пути и дерева кратчайших путей, определение максимального потока, нахождение остовных деревьев, нахождение паросочетаний, задачи с матроидами.

Задачи комбинаторной оптимизации можно рассматривать как поиск лучшего элемента в некотором дискретном множестве, поэтому, в принципе, могут быть использованы любые алгоритмы поиска или метаэвристические алгоритмы. Однако общие алгоритмы поиска не гарантируют ни оптимального решения, ни быстрого решения (за полиномиальное время). Поскольку некоторые задачи дискретной оптимизации NP-полны, как, например, задача о коммивояжёре, это же следует ожидать и для других задач (если не P=NP).

Частные задачи[ | код]

Оптимальный путь коммивояжёра по крупнейшим 15 городам Германии. Это кратчайший путь из 43.589.145.600 = 14!/2 возможных.

См. также[ | код]

Математическое программирование

Литература[ | код]

Примечания[ | код]

  1. ↑ Alexander Schrijver. Algorithms and Combinatorics // Combinatorial Optimization: Polyhedra and Efficiency. — Springer. — С. 1.
  2. ↑ Discrete Optimization. Elsevier. Проверено 8 июня 2009. Архивировано 24 июня 2013 года.

ru.wikibedia.ru


Prostoy-Site | Все права защищены © 2018 | Карта сайта