Задачи оптимизации и методы их решения. Обзор. Задачи методы оптимизации


Методы и задачи оптимизации процессов — МегаЛекции

Сущность математического описания процесса, технической системы или отдельного объекта заключается в получении математической модели связывающей входные факторы и выходные параметры, например, характеристики сырья и выходящего продукта, , где - оператор, характеризующий математическую операцию преобразования входных функций в выходные функции .

Оптимальность процесса означает минимизацию или максимизацию значений некоторой функции, адекватно описывающей данный процесс. Нахождение экстремума функции является классической задачей математического анализа, когда переменные могут изменяться во всем пространстве без каких-либо ограничений. Если функция непрерывно дифференцируема, то экстремальные значения будут в точках, в которых обращаются в нуль все частные производные функции.

Отыскание оптимума функции относится к задачам выпуклого программирования.

Функция , определенная на выпуклом множестве -мерного пространства, называется выпуклой на этом множестве, если для любых точек и любого числа (рис. 7.1)

Рис. 7.1.График функции одной переменной, выпуклой на всей числовой прямой

Рассмотрим постановку задачи выпуклого программирования. Пусть задана система ограничений какого-либо процесса (например, по скоростному режиму рабочих органов, по температурно-влажностным условиям и т.п.) и функция .

Задача выпуклого программирования состоит в отыскании такого решения системы ограничений, при котором целевая функция достигнет экстремального (минимального для выпуклой и максимального для вогнутой функции) значения. Если целевая функция является строго выпуклой (строго вогнутой) и если область решений системы ограничений не пуста и ограничена, то задача выпуклого программирования всегда имеет единственное решение [38].

Пример: Требуется найти минимум функции при следующих ограничениях: .

Построим область допустимых решений данной задачи:

- первое неравенство представляет собой окружность с центром в начале координат и радиусом . Очевидно, область решений данного неравенства лежит внутри окружности и на ней самой;

- область решений неравенства представляет собой полуплоскость, лежащей над этой прямой, включая и саму прямую;

- область решений неравенства представляет собой полуплоскость, лежащей под этой прямой, включая и саму прямую;

Можно видеть, что с учетом не отрицательности переменных областью допустимых решений данной задачи является замкнутый сектор, ограниченный прямыми и начальной окружностью (Рис. 7.2).

Построим линию уровня функции и определим направление ее убывания. Все линии уровня имеют уравнение , т.е. . При получаем линию уровня , представляющую собой окружность с центром в точке и радиусом .

Можно видеть, что в любой точке этой линии уровня при перемещении от центра окружности функция , а при перемещении к центру – убывает. Минимум достигается в точке , т.е. .

Рис. 7.2. Отыскание минимума функции

 

Для приближенного решения задач выпуклого программирования может быть использован метод кусочно-линейной аппроксимации. Идея метода состоит в том, что все из , где - целевая функция, и все (ограничения) заменяются ломаными линиями из прямолинейных отрезков.. При этом исходная задача выпуклого программирования заменяется новой задачей линейного программирования. Новая задача обычно решается симплексным методом.

Из градиентных методов в исследованиях процессов используется метод спуска. Общая схема решения задач этим методом состоит в построении последовательности решений системы ограничений данной задачи по следующему правилу: в качестве выбирается произвольная точка области решений, затем каждая последующая точка получается из предыдущей по формуле , где - некоторое направление (вектор), - число (длина вектора). Направление и величина выбираются так, чтобы обеспечить сходимость последовательности к оптимальному решению . Определить является ли направление приемлемым для продвижения к оптимуму можно по производной по направлению , если производная меньше нуля, то по данному направлению мы приближаемся к оптимуму.

Подробные сведения о методах оптимизации приведены в [39,40,41].

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru

Задачи оптимизации и методы их решения. Обзор

Содержание:

Введение3

1. Основные понятия4

1.1 Определения.4

1.2 Задачи оптимизации.5

2. Одномерная оптимизация6

2.1 Задачи па экстремум.6

2.2 Методы поиска.7

2.3 Метод золотого сечения.8

2.4 Метод Ньютона.11

3. Многомерные задачи оптимизации13

3.1 Минимум функции нескольких переменных.13

3.2 Метод покоординатного спуска.14

3.3 Метод градиентного спуска.14

4. Задачи с ограничениями16

4.1 Линейное Программирование.16

4.2 Геометрический метод.17

4.3 Задача о ресурсах.19

5. Практическая часть.23

Список литературы.27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

Эта курсовая работа описывает задачи оптимизации и методы их решения необходимые для тех или иных видов деятельности, в частности в производстве.

Оптимизацией называют процесс выбора наилучшего варианта из всех возможных. В производстве необходимо знать какой из видов продукции наиболее оптимален для выпуска, и который принесет больше прибыли. В маркетинге тоже используется методы оптимизации.

Маркетинг это комплексная система организации производства и сбыта товаров и услуг основанное на предвидении и удовлетворении спроса потребителей. В маркетинге необходимо изучать потребность покупателей в том или ином товаре, передача о потребностях на предприятие и производство наиболее выгодных товаров.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Основные понятия

 

1.1 Определения.

Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных. С точки зрения инженерных расчетов методы оптимизации позволяют выбрать наилучший вариант конструкции, наилучшее распределение ресурсов и т.д.

В процессе решения задачи оптимизации обычно необходимо найти оптимальные значения некоторых параметров, определяющих данную задачу. При решении инженерных задач их принято называть проектными параметрами, а в экономических задачах их обычно называют параметрами плана. В качестве проектных параметров могут быть, в частности, значения линейных размеров объекта, массы, температуры и т.п. число n проектных параметров x1,x2,…,xn характеризует размерность ( и степень сложности) задачи оптимизации.

Выбор оптимального решения или сравнение двух альтернативных решений проводится с помощью некоторой зависимой величины (функции), определяемой проектными параметрами. Эта величина называется целевой функцией (или критерием качества). В процессе решения задачи оптимизации должны быть найдены такие значения проектных параметров, при которых целевая функция имеет минимум (или максимум). Таким образом, целевая функция это глобальный критерий оптимальности в математических моделях, с помощью которых описываются инженерные или экономические задачи.

Целевую функцию можно записать в виде

U=F(x1, x2,…,xn). (1.1)

Примерами целевой функции, встречающимися в инженерных и экономических расчетах, являются прочность и масса конструкции, мощность установки, объем выпуска продукции, стоимость перевозок груза и т.п.

В случае одного проектного параметра целевая функция (1.1) является функцией одной переменной, и се график - некоторая кривая на плоскости. При целевая функция является функцией двух переменных, и ее график поверхность в трехмерном пространстве.

Следует отметить, что целевая функция не всегда может быть представлена в виде формулы. Иногда она может принимать только некоторые значения, задаваться в виде таблицы и т. п. Во всех случаях она должна быть однозначной функцией проектных параметров.

Целевых функций может быть несколько. Например, при проектировании изделий машиностроения одновременно требуется обеспечить, максимальную надежность, минимальную материалоемкость, максимальный полезный объем (или грузоподъемность). Некоторые целевые функции могут оказаться несовместимыми. В таких случаях необходимо вводить приоритет той или иной целевой функции.

1.2 Задачи оптимизации.

Можно выделить два типа задач оптимизации безусловные и условные. Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной функции (1.1) при действительных переменных и определении соответствующих значений аргументов на некотором множестве σ n-мерного пространства. Обычно рассматриваются задачи минимизации; к ним легко сводятся и задачи на поиск максимума путем замены знака целевой функции на противоположный.

Условные задачи оптимизации, или задачи с ограничениями, это такие, при формулировке которых задаются некоторые условия (ограничения) на множестве . Эти ограничения задаются совокупностью некоторых функций, удовлетворяющих уравнениям или неравенствам.

Ограничения-равенства выражают зависимость между, проектными параметрами, которая должна учитываться при нахождении решения. Эти ограничения отражают законы природы, наличие ресурсов т. п.

в результате ограничений область проектирования , определяемая всеми проектными параметрами, может быть существенно уменьшена в соответствии с ф

www.studsell.com

Характеристика методов решения задач оптимизации

⇐ ПредыдущаяСтр 2 из 17Следующая ⇒

При решении конкретной задачи оптимизации исследователь прежде всего должен выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.

В настоящее время для решения оптимальных задач применяют в основном следующие методы:

· методы исследования функций классического анализа;

· методы, основанные на использовании неопределенных множителей Лагранжа;

· вариационное исчисление;

· динамическое программирование;

· принцип максимума;

· линейное программирование;

· нелинейное программирование.

В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования.

Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие - менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, методы нелинейного программирования) на определенных этапах решения оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием или принципом максимума.

Отметим также, что некоторые методы специально разработаны или наилучшим образом подходят для решения оптимальных задач с математическими моделями определенного вида. Так, математический аппарат линейного программирования, специально создан для решения задач с линейными критериями оптимальности и линейными ограничениями на переменные и позволяет решать большинство задач, сформулированных в такой постановке. Так же и геометрическое программирование предназначено для решения оптимальных задач, в которых критерий оптимальности и ограничения представляются специального вида функциями позиномами.

Динамическое программирование хорошо приспособлено для решения задач оптимизации многостадийных процессов, особенно тех, в которых состояние каждой стадии характеризуется относительно небольшим числом переменных состояния. Однако при наличии значительного числа этих переменных, т. е. при высокой размерности каждой стадии, применение метода динамического программирования затруднительно вследствие ограниченных быстродействия и объема памяти вычислительных машин.

Пожалуй, наилучшим путем при выборе метода оптимизации, наиболее пригодного для решения соответствующей задачи, следует признать исследование возможностей и опыта применения различных методов оптимизации. Ниже приводится краткий обзор математических методов решения оптимальных задач и примеры их использования. Здесь же дана лишь краткая характеристика указанных методов и областей их применения, что до некоторой степени может облегчить выбор того или иного метода для решения конкретной оптимальной задачи.

Методы исследования функций классического анализа представляют собой наиболее известные методы решения несложных оптимальных задач, с которыми известны из курса математического анализа. Обычной областью использования данных методов являются задачи с известным аналитическим выражением критерия оптимальности, что позволяет найти не очень сложное, также аналитическое выражение для производных. Полученные приравниванием нулю производных уравнения, определяющие экстремальные решения оптимальной задачи, крайне редко удается решить аналитическим путем, поэтому, как, правило, применяют вычислительные машины. При этом надо решить систему конечных уравнений, чаще всего нелинейных, для чего приходится использовать численные методы, аналогичные методам нелинейного программирования.

Дополнительные трудности при решении оптимальной задачи методами исследования функций классического анализа возникают вследствие того, что система уравнений, получаемая в результате их применения, обеспечивает лишь необходимые условия оптимальности. Поэтому все решения данной системы (а их может быть и несколько) должны быть проверены на достаточность. В результате такой проверки сначала отбрасывают решения, которые не определяют экстремальные значения критерия оптимальности, а затем среди остающихся экстремальных решений выбирают решение, удовлетворяющее условиям оптимальной задачи, т. е. наибольшему или наименьшему значению критерия оптимальности в зависимости от постановки задачи.

Методы исследования при наличии ограничений на область изменения независимых переменных можно использовать только для отыскания экстремальных значений внутри указанной области. В особенности это относится к задачам с большим числом независимых переменных (практически больше двух), в которых анализ значений критерия оптимальности на границе допустимой области изменения переменных становится весьма сложным.

Метод множителей Лагранжа применяют для решения задач такого же класса сложности, как и при использовании обычных методов исследования функций, но при наличии ограничений типа равенств на независимые переменные. К требованию возможности получения аналитических выражений для производных от критерия оптимальности при этом добавляется аналогичное требование относительно аналитического вида уравнений ограничений.

В основном при использовании метода множителей Лагранжа приходится решать те же задачи, что и без ограничений. Некоторое усложнение в данном случае возникает лишь от введения дополнительных неопределенных множителей, вследствие чего порядок системы уравнений, решаемой для нахождения экстремумов критерия оптимальности, соответственно повышается на число ограничений. В остальном, процедура поиска решений и проверки их на оптимальность отвечает процедуре решения задач без ограничений.

Множители Лагранжа можно применять для решения задач оптимизации объектов на основе уравнений с частными производными и задач динамической оптимизации. При этом вместо решения системы конечных уравнений для отыскания оптимума необходимо интегрировать систему дифференциальных уравнений.

Следует отметить, что множители Лагранжа используют также в качестве вспомогательного средства и при решении специальными методами задач других классов с ограничениями типа равенств, например, в вариационном исчислении и динамическом программировании. Особенно эффективно применение множителей Лагранжа в методе динамического программирования, где с их помощью иногда удается снизить размерность решаемой задачи.

Методы вариационного исчисления обычно используют для решения задач, в которых критерии оптимальности представляются в виде функционалов и решениями которых служат неизвестные функции. Такие задачи возникают обычно при статической оптимизации процессов с распределенными параметрами или в задачах динамической оптимизации.

Вариационные методы позволяют в этом случае свести решение оптимальной задачи к интегрированию системы дифференциальных ' уравнений Эйлера, каждое из которых является нелинейным дифференциальным уравнением второго порядка с граничными условиями, заданными на обоих концах интервала интегрирования. Число уравнений указанной системы при этом равно числу неизвестных функций, определяемых при решении оптимальной задачи. Каждую функцию находят в результате интегрирования получаемой системы.

Уравнения Эйлера выводятся как необходимые условия экстремума функционала. Поэтому полученные интегрированием системы дифференциальных уравнений функции должны быть проверены на экстремум функционала.

При наличии ограничений типа равенств, имеющих вид функционалов, применяют множители Лагранжа, что дает возможность перейти от условной задачи к безусловной. Наиболее значительные трудности при использовании вариационных методов возникают в случае решения задач с ограничениями типа неравенств.

Заслуживают внимания прямые методы решения задач оптимизации функционалов, обычно позволяющие свести исходную вариационную задачу к задаче нелинейного программирования, решить которую иногда проще, чем краевую задачу для уравнений Эйлера.

Динамическое программирование служит эффективным методом решения задач оптимизации дискретных многостадийных процессов, для которых критерий оптимальности задается как аддитивная функция критериев оптимальности отдельных стадий. Без особых затруднений указанный метод можно распространить и на случай, когда критерий оптимальности задан в другой форме, однако при этом обычно увеличивается размерность отдельных стадий.

По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса. При этом закон управления на каждой стадии находят путем решения частных задач оптимизации последовательно для всех стадий процесса с помощью методов исследования функций классического анализа или методов нелинейного программирования. Результаты решения обычно не могут быть выражены в аналитической форме, а получаются в виде таблиц.

Ограничения на переменные задачи не оказывают влияния на общий алгоритм решения, а учитываются при решении частных задач оптимизации на каждой стадии процесса. При наличии ограничений типа равенств иногда даже удается снизить размерность этих частных задач за счет использования множителей Лагранжа. Применение метода динамического программирования для оптимизации процессов с распределенными параметрами или в задачах динамической оптимизации приводит к решению дифференциальных уравнений в частных производных. Вместо решения таких уравнений зачастую значительно проще представить непрерывный процесс как дискретный с достаточно большим числом стадий. Подобный прием оправдан особенно в тех случаях, когда имеются ограничения на переменные задачи и прямое решение дифференциальных уравнений осложняется необходимостью учета указанных ограничений.

При решении задач методом динамического программирования, как правило, используют вычислительные машины, обладающие достаточным объемом памяти для хранения промежуточных результатов решения, которые обычно получаются в табличной форме.

Принцип максимума применяют для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений. Достоинством математического аппарата принципа максимума является то, что решение может определяться в виде разрывных функций; это свойственно многим задачам оптимизации, например задачам оптимального управления объектами, описываемыми линейными дифференциальными уравнениями.

Нахождение оптимального решения при использовании принципа максимума сводится к задаче интегрирования системы дифференциальных уравнений процесса и сопряженной системы для вспомогательных функций при граничных условиях, заданных на обоих концах интервала интегрирования, т. е. к решению краевой задачи. На область изменения переменных могут быть наложены ограничения. Систему дифференциальных уравнений интегрируют, применяя обычные программы на цифровых вычислительных машинах.

Принцип максимума для процессов, описываемых дифференциальными уравнениями, при некоторых предположениях является достаточным условием оптимальности. Поэтому дополнительной проверки на оптимум получаемых решений обычно не требуется.

Для дискретных процессов принцип максимума в той же формулировке, что и для непрерывных, вообще говоря, несправедлив. Однако условия оптимальности, получаемые при его применении для многостадийных процессов, позволяют найти достаточно удобные алгоритмы оптимизации.

Линейное программирование представляет собой математический аппарат, разработанный для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных. Такие задачи обычно встречаются при решении вопросов оптимального планирования производства с ограниченным количеством ресурсов, при определении оптимального плана перевозок (транспортные задачи) и т. д.

Для решения большого круга задач линейного программирования имеется практически универсальный алгоритм - симплексный метод, позволяющий за конечное число итераций находить оптимальное решение подавляющего большинства задач. Тип используемых ограничений (равенства или неравенства) не сказывается на возможности применения указанного алгоритма. Дополнительной проверки на оптимальность для получаемых решений не требуется. Как правило, практические задачи линейного программирования отличаются весьма значительным числом независимых переменных. Поэтому для их решения обычно используют вычислительные машины, необходимая мощность которых определяется размерностью решаемой задачи.

Методы нелинейного программирования применяют для решения оптимальных задач с нелинейными функциями цели. На независимые переменные могут быть наложены ограничения также в виде нелинейных соотношений, имеющих вид равенств или неравенств. По существу методы нелинейного программирования используют, если ни один из перечисленных выше методов не позволяет сколько-нибудь продвинуться в решении оптимальной задачи. Поэтому указанные методы иногда называют также прямыми методами решения оптимальных задач.

Для получения численных результатов важное место отводится нелинейному программированию и в решении оптимальных задач такими методами, как динамическое программирование, принцип максимума и т. п. на определенных этапах их применения.

Названием “методы нелинейного программирования” объединяется большая группа численных методов, многие из которых приспособлены для решения оптимальных задач соответствующего класса. Выбор того или иного метода обусловлен сложностью вычисления критерия оптимальности и сложностью ограничивающих условий, необходимой точностью решения, мощностью имеющейся вычислительной машины и т.д. Ряд методов нелинейного программирования практически постоянно используется в сочетании с другими методами оптимизации, как, например, метод сканирования в динамическом программировании. Кроме того, эти методы служат основой построения систем автоматической оптимизации - оптимизаторов, непосредственно применяющихся для управления производственными процессами.

Геометрическое программирование есть метод решения одного специального класса задач нелинейного программирования, в которых критерий оптимальности и ограничения задаются в виде позиномов - выражений, представляющих собой сумму произведений степенных функций от независимых переменных. С подобными задачами иногда приходится сталкиваться в проектировании. Кроме того, некоторые задачи нелинейного программирования иногда можно свести к указанному представлению, используя аппроксимационное представление для целевых функций и ограничений.

Специфической особенностью методов решения оптимальных задач (за исключением методов нелинейного программирования) является то, что до некоторого этапа оптимальную задачу решают аналитически, т. е. находят определенные аналитические выражения, например, системы конечных или дифференциальных уравнений, откуда уже отыскивают оптимальное решение. В отличие от указанных методов при использовании методов нелинейного программирования, которые, как уже отмечалось выше, могут быть названы прямыми, применяют информацию, получаемую при вычислении критерия оптимальности, изменение которого служит оценкой эффективности того или иного действия.

Важной характеристикой любой оптимальной задачи является ее размерность п, равная числу переменных, задание значений которых необходимо для однозначного определения состояния оптимизируемого объекта. Как правило, решение задач высокой размерности связано с необходимостью выполнения большого объема вычислений. Ряд методов (например, динамическое программирование и дискретный принцип максимума) специально предназначен для решения задач оптимизации процессов высокой размерности, которые могут быть представлены как многостадийные процессы с относительно невысокой размерностью каждой стадии.

В таблице 1.1 [2] дана характеристика областей применения различных методов оптимизации, при этом за основу положена сравнительная оценка эффективности использования каждого метода для решения различных типов оптимальных задач. Классификация задач проведена по следующим признакам:

· вид математического описания процесса;

· тип ограничений на переменные процесса

· число переменных.

Предполагается, что решение оптимальной задачи для процессов, описываемых системами конечных уравнений, определяется как конечный набор значений управляющих воздействий (статическая оптимизация процессов с сосредоточенными параметрами), а для процессов, описываемых системами обыкновенных дифференциальных уравнений, управляющие воздействия характеризуются функциями времени (динамическая оптимизация процессов с сосредоточенными параметрами) или пространственных переменных (статическая оптимизация процессов с распределенными параметрами).

Классификация задач по группам с числом независимых переменных, большим и меньшим трех или равным трем как характеристика размерности задач с большим и малым числом переменных, разумеется, весьма условна и в данном случае выбрана скорее из соображений наглядности графического изображения пространства изменения переменных задачи - фазового пространства (при числе переменных большем трех графическое изображение фазового пространства обычными приемами отсутствует). Тем не менее, такая классификация до некоторой степени все же отражает действительные трудности, возникающие при решении задач с размерностью выше трех.

 

 

ТАБЛИЦА 1.1. Области применения методов оптимизации
Вид описания процесса Конечные уравнения Дифференциальные уравнения
Тип ограничений на переменные Нет Равенства Неравенства Нет Равенства Неравенства
Число переменных п ?3 >3 ?3 >3 ?3 >3 ?3 >3 ?3 >3 ?3 >3
ТТип метода Методы классического анализа
Множители Лагранжа - - - - - - - -
Вариационное исчисление - - - - - - 2; 7 3; 7 - -
Динамическое программирование 1; 5 3; 5 1;5;7 3; 5; 7 1; 5 3; 5
Принцип максимума 2; 5 1; 5 2; 5 2; 5 2; 5 2; 5
Линейное программирование - - - 2; 6 2; 6 1; 6 - - - - - -
Методы нелинейного программирования .1
Геометрическое программирование 2; 8 2; 8 - - 2; 8 2; 8 - - - - - -
Примечания: 1. Эффективное применение метода. 2. Используется. 3. Возможно применение. 4. Используется как вспомогательный метод. 5. Многостадийные процессы (размерность указывается для отдельной стадии). 6. Задачи с линейными критериями оптимальности и линейными ограничениями. 7. Используются множители Лагранжа. 8. Задачи с критериями и ограничениями в форме позиномов.

 

 

mykonspekts.ru


Prostoy-Site | Все права защищены © 2018 | Карта сайта