Тема работы: Оптимизация химико-технологических процессов. Оптимизация химико технологических процессов
Оптимизация химико технологических процессов
coolreferat.com
Оптимизация - химико-технологический процесс - Большая Энциклопедия Нефти и Газа, статья, страница 1
Оптимизация - химико-технологический процесс
Cтраница 1
Оптимизация химико-технологических процессов в настоящее время является самостоятельной научной дисциплиной. Принятие оптимальных решений для производства, включающего большое число отдельных типовых процессов, требует системного подхода, учитывающего взаимное влияние этих процессов, а также систем контроля и управления производством. Рассмотрение этих вопросов не входит в задачу настоящей книги. [1]
При оптимизации химико-технологических процессов или объектов в математические модели входят параметры, определяемые с разной степенью точности. Кроме того, при реализации процесса возможны непредсказуемые изменения некоторых параметров. Следовательно, для окончательного решения задачи необходимо знать влияние такого рода факторов на выбор оптимального варианта. Это возможно сделать при анализе чувствительности целевой функции по отношению к отклонению параметров от оптимального режима. При этом необходим определенный компромисс между оптимальностью и чувствительностью. [2]
Для оптимизации химико-технологических процессов широко используется симплексный метод. [4]
Задача оптимизации химико-технологического процесса по существу является задачей нахождения некоторого компромисса при наличии определенных условий проведения процесса и ограниченности ресурсов. Это значит, что в реальных задачах в боль-шинстве случаев присутствуют ограничения. [5]
Реальные задачи оптимизации химико-технологических процессов обычно достаточно сложны, когда для определения / при данных значениях управляющих переменных приходится решать системы обыкновенных дифференциальных уравнений либо систему дифференциальных уравнений в частных производных, либо, наконец, некоторые совокупности таких систем. Поэтому применение первого метода для вычисления необходимых производных в ряде случаев может привести к очень большим временам счета. [6]
В задачах оптимизации химико-технологических процессов нередко критерии оптимальности представляются в виде функционалов, решениями которых являются искомые функции. [7]
В задачах оптимизации химико-технологических процессов важное место занимает случай, когда не только ограничения, но и целевая функция являются линейными. Оптимизация линейных целевых функций при линейных ограничениях представляет собой задачу линейного программирования. [8]
Основой методов оптимизации химико-технологических процессов служит достаточно подготовленный сейчас математический аппарат, средством реализации которого являются электронные вычислительные машины. На современном этапе важнейшая задача химической технологии заключается в составлении и использовании двух алгоритмов: оптимального проектирования процесса и оптимального управления данным процессом. [9]
При решении задач оптимизации химико-технологических процессов очень часто ограничения на управляющие переменные являются линейными. [11]
Рассмотрим теперь пример оптимизации химико-технологического процесса. [13]
Изложению алгоритмов поисковых методов оптимизации химико-технологических процессов и посвящена эта книга. [14]
В практике решения задач оптимизации химико-технологических процессов приходится иметь дело с разнообразными по своей природе варьируемыми переменными: потоками химических реагентов, температурой, давлением, временем контакта и др., которые не только различаются по своим абсолютным значениям, но и по-разному влияют на режим процесса. [15]
Страницы: 1 2 3 4
www.ngpedia.ru
Оптимизация химико технологических процессов
ОПТИМИЗАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
Введение
Процессы химической технологии это сложные физико-химические процессы, протекающие как в пространстве, так и во времени. В них участвуют потоки энергии (тепло и холод) и многофазные и многокомпонентные потоки вещества.
При разработке схемы конкретного процесса химической технологии следует, путем оптимизации, найти наилучший (по принятому критерию) вариант решения из конечного множества альтернативных. Такой путь выбора варианта схемы часто называют синтезом схем. Синтезу схем предшествует физико-химическое исследование исходной смеси, проводимое с целью выявления ограничений на получение требуемых (конечных) продуктов. Такое исследование можно назвать предсинтезом схем. Предсинтез схем позволяет в большинстве случаев как существенно снизить размерность оптимизируемого множества альтернативных вариантов, так и на самом начальном уровне отбросить нереализующиеся варианты при синтезе оптимальных схем. Еще одним этапом разработки схемы химико-технологического процесса (ХТП) является выбор оптимальных вариантов конструкции и функционирования конкретных аппаратов и узлов схемы.
Разработку схемы химико-технологического процесса можно рассматривать как иерархическую задачу, разделив ее на несколько уровней иерархии. При этом результаты более низкого уровня определяют результаты на более высоком уровне, а при неоднозначности решения на более высоком уровне возможен возврат на более низкий. Каждый уровень иерархии может состоять из нескольких подуровней связанных или не связанных между собой обратными связями.
Целью настоящего курса по оптимизации построения ХТП является не столько научить набору стандартных решений, сколько научить думать, анализировать задачу, уметь искать решения и оценивать их результаты. Что это значит в наших конкретных обстоятельствах? Имея информацию о цели, исходных веществах, наборе ограничений, возможной совокупности воздействий на систему, сформулировать частные и общие критерии оптимизации и найти «лучший из возможных» вариантов.
Определения
Сформулируем некоторые полезные определения. Химико-технологическая система (ХТС) – это совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в которых осуществляется определенная последовательность технологических операций (подготовка сырья, собственно химическое превращение, выделение целевых продуктов). Элемент ХТС – это аппарат, в котором протекает какой-либо типовой химико-технологический процесс.
Входными переменными (параметрами) ХТС являются физические параметры входных потоков сырья или исходных продуктов, а также параметры различных физико-химических воздействий окружающей среды на процесс функционирования ХТС. Входные переменные по характеру воздействия на ХТС можно разделить на три типа. I. Неизменные входные параметры. Ими называются такие параметры, значения которых могут быть измерены, но возможность воздействия, на которые отсутствует. Значения указанных параметров не зависят от режима процесса (например, состав исходного сырья). II. Управляющие параметры. Это такие параметры, на которые можно оказывать прямое воздействие в соответствии с теми или иными требованиями, что позволяет управлять процессом (например, регулируемое давление в реакторе). III. Возмущающие параметры. Такими называются параметры, значения которых случайным образом изменяются с течением времени и которые недоступны для измерения (например, различные примеси в исходном сырье).
Выходные параметры. Под выходными понимаются параметры, величины которых определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмущающих параметров. Иногда выходные параметры называют также, параметрами состояния. Подчеркивая тем самым их назначение описывать состояние процесса.
Отметим, что действие возмущающих параметров проявляется в том, что параметры состояния процесса при известной совокупности входных и управляющих параметров определяются неоднозначно. Процессы, для которых влияние случайных возмущений велико называют стохастическими. В обратном случае – детерминированными.
Для изучения стохастических процессов обычно используют математический аппарат теории вероятностей. С его помощью параметры состояния оцениваются в терминах математического ожидания, а возмущающие параметры характеризуются вероятностными законами распределения. В теории оптимизации работают, как правило, с детерминированными процессами.
Для детерминированных моделей зависимость выходных параметров от входных и управляющих можно записать в виде:
xвых = φ (xвх, u) ( 1 )
Критерий оптимальности детерминированного процесса представляется как функция входных, выходных и управляющих параметров:
R = R(xвх, xвых, u) ( 2 )
Параметры ХТС и параметры технологического режима элементов обуславливают характер процесса функционирования системы, т.е. некоторый закон изменения состояния системы. Параметры ХТС подразделяются на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (например, диаметр и высота слоя насадки в массообменном аппарате). К технологическим параметрам ХТС относятся коэффициенты степеней превращения и степеней разделения химических компонентов, коэффициенты тепло- и массопередачи, константы скоростей химических реакций и т.д.
Параметрами технологического режима элементов ХТС называют совокупность основных факторов (параметров) внутри элемента (температура, давление, применение и активность катализатора, флегмовое число), которые влияют на скорость технологического процесса, выход и качество химических продуктов.
Следует различать параметрическую оптимизацию (оптимизация параметров физико-химических или эмпирических моделей природы процесса), оптимизацию технологического процесса, оптимизацию схемы, оптимизацию управления процессом и оптимизацию самого процесса выбора.
Следует различать оптимизацию ХТС на стадии проектирования и на стадии реконструкции (в связи с тем, что значительная часть оборудования не может быть заменена, возникает большое количество дополнительных граничных условий).
Критерии оптимизации
Для обозначения показателя, экстремум которого соответствует оптимальному решению, используется большой набор терминов: функция цели (целевая функция), функция отклика, параметр оптимизации, критерий оптимизации и др. Чаще всего эти термины рассматриваются как синонимы.
Понятие критерий оптимизации надо четко различать с понятием цель оптимизации. Целью оптимизации в ХТП является получение заданного продукта (вещества) с заданными параметрами (например, состав). С понятиями критерий оптимизации и цель оптимизации тесно связаны такие понятия как граничные условия по входным, выходным и управляющим параметрам системы. Граничными условиями мы будем называть такие в рамках, которых могут варьироваться входные, выходные и управляющие параметрам системы (например, температура как управляющий параметр процесса может варьироваться только в определенном диапазоне). Критерий оптимизации имеет смысл, если при его определении учтены граничные условия по входным, выходным и управляющим параметрам системы.
Выбор критерия оптимизации является одним из первых и ответственных этапов работ по выбору оптимальных решений. В самом деле, прежде чем искать наилучшее, наивыгоднейшее решение той или иной задачи, необходимо четко определить, что мы будем понимать под понятием «наивыгоднейшее». Выбор критерия недостаточно полно отражающего постановку задачи, может привести к серьезным просчетам, приводящим в последствии к не достижению цели оптимизации.
Обычно считается, что как при разработке и проектировании производства, так и при управлении им, оптимальным является решение, обеспечивающее наибольшую экономическую эффективность производства. Для самостоятельного производственного комплекса, исходные и конечные продукты которого являются товарными, это положение стало общепризнанным. В случае отдельных аппаратов и узлов технологической схемы наряду с критерием эффективности используют и так называемые «технологические» критерии.
Основная трудность в формировании экономического критерия оптимизации обусловлена тем, что из математической постановки задачи вытекает требование использовать в качестве критерия единственный обобщенный показатель. В то же время экономическая эффективность производства имеет множество частных аспектов, и для их оценки применяются многочисленные самостоятельные показатели, в том числе такие, как производительность, себестоимость продукции, прибыль, рентабельность и др.
Важно отметить, что при выборе обобщенного показателя речь идет не только об учете в той или иной степени нескольких аспектов экономической эффективности, но и о сопоставлении их в эквивалентных соотношениях, которые позволяли бы соизмерять выигрыш за счет улучшения одних показателей с проигрышем за счет ухудшения других.
Необходимость такого сопоставления вытекает из компромиссного характера большинства задач оптимизации. Компромиссный характер оптимизации обусловлен тем, что варьирование параметров в окрестностях оптимума приводит, как правило, к благоприятному изменению лишь некоторых частных показателей эффективности и одновременно сопровождается неблагоприятным изменением остальных частных показателей. Так, например, при снижении себестоимости продукции, вследствие более полной конверсии исходных продуктов реакции, требуется увеличение объема реактора, т.е. происходит рост капитальных затрат. Увеличение чистоты продукта, при прочих равных условиях, часто может быть достигнуто при увеличении капитальных и эксплуатационных затрат по узлу разделения. Следует отметить, что в некоторых случаях оптимальный компромисс может находиться за пределами допустимых значений варьируемых параметров, ограниченных теми или иными техническими условиями, требованиями безопасности и т.п.
Из множества частных показателей эффективности производства можно выделить основные экономические параметры, которые при заданных ценах и нормативных показателях однозначно определяют значения подавляющего большинства остальных показателей. Часто главными экономическими параметрами выбирают следующие:
1. Количество реализованной продукции В т/год. Для n видов продукции {Bj}, где j = 1, …, n.
2. Качество продукции, которое по каждому из конечных продуктов может оцениваться совокупностью pj физических или физико-химических параметров, например температура плавления, содержание примесей, мутность раствора и т.п.
3. Эксплуатационные, т.е. регулярные затраты на производство продукции.
4. Капитальные, т.е. единовременные затраты, включая затраты на создание необходимых для функционирования производства оборотных фондов.
Как правило, варьируя их в тех или иных пропорциях, получают обобщенный критерий эффективности производства.
Сформулированному обобщенному критерию оптимизации схемы в целом не должны противоречить критерии оптимального функционирования отдельных ее составных частей. Локальные критерии оптимизации должны, с одной стороны, выбираться автономно для данного узла или аппарата, но сдругой стороны не вступать в конфликт с глобальным критерием. Известно, что совокупность оптимальных критериев составных частей общего не обязательно дает совокупный критерий оптимизации целого. Верно и обратное утверждение.
Топологический метод и ХТС
Большая сложность современных ХТС, многомерность их как по числу составляющих элементов, так и по числу выполняемых ими функций, высокая степень взаимосвязанности и параметрического взаимовлияния элементов определяет возникновение при решении задачи анализа и синтеза схем ряда принципиальных трудностей научно-исследовательского, методологического и вычислительного характера. Эти трудности могут быть в некоторой степени преодолены при применении топологического метода анализа ХТС. Этот метод предоставляет возможность формализовать функциональную связь между топологическим представлением системы и количественными характеристиками функционирования системы. С помощью топологического метода анализа можно разрабатывать оптимальную стратегию решения задач анализа функционирования и оптимизации сложных систем.
Применение топологического метода анализа основано на рассмотрении математических топологических моделей систем, которыми являются потоковые и структурные графы. Применение топологических представлений позволяет большой объем существенной информации о сложной ХТС приводить к компактной и наглядной форме. Это уже само по себе дает возможность составить качественное представление о некоторых свойствах исследуемой системы.
Отметим, что с помощью потоковых и структурных графов можно представить физико-химическую структуру исходной смеси, особенности технологической топологии системы в целом и отдельных ее узлов, устанавливать связь между изменениями технологической структуры и количественными характеристиками ХТС.
Основные понятия и определения теории графов
Пусть дано множество Х, которое состоит из элементов, называемых точками. Дан закон, позволяющий установить соотношение Т между каждым элементом множества Х и некоторыми из его подмножеств. Обозначим через Тх некое подмножество множества Х, отвечающее элементу х множества Х. Две математические величины – «множество Х» и «соответствие Т» - определяют граф G, обозначаемый как G = (X, T). Элементы множества Х будем изображать точками, и называть вершинами графа. Соотношения Т будем изображать отрезками (иногда ориентированными), соединяющими элемент с элементами подмножества Тх, и называть ребрами или дугами графа. Граф G называется конечным, если число его вершин конечно. На рис.1,а показан граф, определяемый множеством
X = {x0, x1, x2, x3, x4, x5}.
Х4
Х0
Х5
Х2
Х3
Х1
а)
Х1
Х3
Х2
Х4
Хn
Х3
б)
6
5
4
3
2
1
d
b
c
a
в)
Рис.1. Различные графы: а – граф, определяемый множеством вершин Х = {x0, x1, …, x5}; б – нуль граф; в – граф, определяемый множеством вершин Х = {a, b, c, d}.
doc4web.ru
Реферат: Оптимизация химико технологических процессов
ОПТИМИЗАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
Введение
Процессы химической технологии это сложные физико-химические процессы, протекающие как в пространстве, так и во времени. В них участвуют потоки энергии (тепло и холод) и многофазные и многокомпонентные потоки вещества.
При разработке схемы конкретного процесса химической технологии следует, путем оптимизации, найти наилучший (по принятому критерию) вариант решения из конечного множества альтернативных. Такой путь выбора варианта схемы часто называют синтезом схем. Синтезу схем предшествует физико-химическое исследование исходной смеси, проводимое с целью выявления ограничений на получение требуемых (конечных) продуктов. Такое исследование можно назвать предсинтезом схем. Предсинтез схем позволяет в большинстве случаев как существенно снизить размерность оптимизируемого множества альтернативных вариантов, так и на самом начальном уровне отбросить нереализующиеся варианты при синтезе оптимальных схем. Еще одним этапом разработки схемы химико-технологического процесса (ХТП) является выбор оптимальных вариантов конструкции и функционирования конкретных аппаратов и узлов схемы.
Разработку схемы химико-технологического процесса можно рассматривать как иерархическую задачу, разделив ее на несколько уровней иерархии. При этом результаты более низкого уровня определяют результаты на более высоком уровне, а при неоднозначности решения на более высоком уровне возможен возврат на более низкий. Каждый уровень иерархии может состоять из нескольких подуровней связанных или не связанных между собой обратными связями.
Целью настоящего курса по оптимизации построения ХТП является не столько научить набору стандартных решений, сколько научить думать, анализировать задачу, уметь искать решения и оценивать их результаты. Что это значит в наших конкретных обстоятельствах? Имея информацию о цели, исходных веществах, наборе ограничений, возможной совокупности воздействий на систему, сформулировать частные и общие критерии оптимизации и найти «лучший из возможных» вариантов.
Определения
Сформулируем некоторые полезные определения. Химико-технологическая система (ХТС) – это совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в которых осуществляется определенная последовательность технологических операций (подготовка сырья, собственно химическое превращение, выделение целевых продуктов). Элемент ХТС – это аппарат, в котором протекает какой-либо типовой химико-технологический процесс.
Входными переменными (параметрами) ХТС являются физические параметры входных потоков сырья или исходных продуктов, а также параметры различных физико-химических воздействий окружающей среды на процесс функционирования ХТС. Входные переменные по характеру воздействия на ХТС можно разделить на три типа. I. Неизменные входные параметры. Ими называются такие параметры, значения которых могут быть измерены, но возможность воздействия, на которые отсутствует. Значения указанных параметров не зависят от режима процесса (например, состав исходного сырья). II. Управляющие параметры. Это такие параметры, на которые можно оказывать прямое воздействие в соответствии с теми или иными требованиями, что позволяет управлять процессом (например, регулируемое давление в реакторе). III. Возмущающие параметры. Такими называются параметры, значения которых случайным образом изменяются с течением времени и которые недоступны для измерения (например, различные примеси в исходном сырье).
Выходные параметры. Под выходными понимаются параметры, величины которых определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмущающих параметров. Иногда выходные параметры называют также, параметрами состояния. Подчеркивая тем самым их назначение описывать состояние процесса.
Отметим, что действие возмущающих параметров проявляется в том, что параметры состояния процесса при известной совокупности входных и управляющих параметров определяются неоднозначно. Процессы, для которых влияние случайных возмущений велико называют стохастическими. В обратном случае – детерминированными.
Для изучения стохастических процессов обычно используют математический аппарат теории вероятностей. С его помощью параметры состояния оцениваются в терминах математического ожидания, а возмущающие параметры характеризуются вероятностными законами распределения. В теории оптимизации работают, как правило, с детерминированными процессами.
Для детерминированных моделей зависимость выходных параметров от входных и управляющих можно записать в виде:
xвых = φ (xвх, u) ( 1 )
Критерий оптимальности детерминированного процесса представляется как функция входных, выходных и управляющих параметров:
R = R(xвх, xвых, u) ( 2 )
Параметры ХТС и параметры технологического режима элементов обуславливают характер процесса функционирования системы, т.е. некоторый закон изменения состояния системы. Параметры ХТС подразделяются на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (например, диаметр и высота слоя насадки в массообменном аппарате). К технологическим параметрам ХТС относятся коэффициенты степеней превращения и степеней разделения химических компонентов, коэффициенты тепло- и массопередачи, константы скоростей химических реакций и т.д.
Параметрами технологического режима элементов ХТС называют совокупность основных факторов (параметров) внутри элемента (температура, давление, применение и активность катализатора, флегмовое число), которые влияют на скорость технологического процесса, выход и качество химических продуктов.
Следует различать параметрическую оптимизацию (оптимизация параметров физико-химических или эмпирических моделей природы процесса), оптимизацию технологического процесса, оптимизацию схемы, оптимизацию управления процессом и оптимизацию самого процесса выбора.
Следует различать оптимизацию ХТС на стадии проектирования и на стадии реконструкции (в связи с тем, что значительная часть оборудования не может быть заменена, возникает большое количество дополнительных граничных условий).
Критерии оптимизации
Для обозначения показателя, экстремум которого соответствует оптимальному решению, используется большой набор терминов: функция цели (целевая функция), функция отклика, параметр оптимизации, критерий оптимизации и др. Чаще всего эти термины рассматриваются как синонимы.
Понятие критерий оптимизации надо четко различать с понятием цель оптимизации. Целью оптимизации в ХТП является получение заданного продукта (вещества) с заданными параметрами (например, состав). С понятиями критерий оптимизации и цель оптимизации тесно связаны такие понятия как граничные условия по входным, выходным и управляющим параметрам системы. Граничными условиями мы будем называть такие в рамках, которых могут варьироваться входные, выходные и управляющие параметрам системы (например, температура как управляющий параметр процесса может варьироваться только в определенном диапазоне). Критерий оптимизации имеет смысл, если при его определении учтены граничные условия по входным, выходным и управляющим параметрам системы.
Выбор критерия оптимизации является одним из первых и ответственных этапов работ по выбору оптимальных решений. В самом деле, прежде чем искать наилучшее, наивыгоднейшее решение той или иной задачи, необходимо четко определить, что мы будем понимать под понятием «наивыгоднейшее». Выбор критерия недостаточно полно отражающего постановку задачи, может привести к серьезным просчетам, приводящим в последствии к не достижению цели оптимизации.
Обычно считается, что как при разработке и проектировании производства, так и при управлении им, оптимальным является решение, обеспечивающее наибольшую экономическую эффективность производства. Для самостоятельного производственного комплекса, исходные и конечные продукты которого являются товарными, это положение стало общепризнанным. В случае отдельных аппаратов и узлов технологической схемы наряду с критерием эффективности используют и так называемые «технологические» критерии.
Основная трудность в формировании экономического критерия оптимизации обусловлена тем, что из математической постановки задачи вытекает требование использовать в качестве критерия единственный обобщенный показатель. В то же время экономическая эффективность производства имеет множество частных аспектов, и для их оценки применяются многочисленные самостоятельные показатели, в том числе такие, как производительность, себестоимость продукции, прибыль, рентабельность и др.
Важно отметить, что при выборе обобщенного показателя речь идет не только об учете в той или иной степени нескольких аспектов экономической эффективности, но и о сопоставлении их в эквивалентных соотношениях, которые позволяли бы соизмерять выигрыш за счет улучшения одних показателей с проигрышем за счет ухудшения других.
Необходимость такого сопоставления вытекает из компромиссного характера большинства задач оптимизации. Компромиссный характер оптимизации обусловлен тем, что варьирование параметров в окрестностях оптимума приводит, как правило, к благоприятному изменению лишь некоторых частных показателей эффективности и одновременно сопровождается неблагоприятным изменением остальных частных показателей. Так, например, при снижении себестоимости продукции, вследствие более полной конверсии исходных продуктов реакции, требуется увеличение объема реактора, т.е. происходит рост капитальных затрат. Увеличение чистоты продукта, при прочих равных условиях, часто может быть достигнуто при увеличении капитальных и эксплуатационных затрат по узлу разделения. Следует отметить, что в некоторых случаях оптимальный компромисс может находиться за пределами допустимых значений варьируемых параметров, ограниченных теми или иными техническими условиями, требованиями безопасности и т.п.
Из множества частных показателей эффективности производства можно выделить основные экономические параметры, которые при заданных ценах и нормативных показателях однозначно определяют значения подавляющего большинства остальных показателей. Часто главными экономическими параметрами выбирают следующие:
1. Количество реализованной продукции В т/год. Для n видов продукции {Bj}, где j = 1, …, n.
2. Качество продукции, которое по каждому из конечных продуктов может оцениваться совокупностью pj физических или физико-химических параметров, например температура плавления, содержание примесей, мутность раствора и т.п.
3. Эксплуатационные, т.е. регулярные затраты на производство продукции.
4. Капитальные, т.е. единовременные затраты, включая затраты на создание необходимых для функционирования производства оборотных фондов.
Как правило, варьируя их в тех или иных пропорциях, получают обобщенный критерий эффективности производства.
Сформулированному обобщенному критерию оптимизации схемы в целом не должны противоречить критерии оптимального функционирования отдельных ее составных частей. Локальные критерии оптимизации должны, с одной стороны, выбираться автономно для данного узла или аппарата, но сдругой стороны не вступать в конфликт с глобальным критерием. Известно, что совокупность оптимальных критериев составных частей общего не обязательно дает совокупный критерий оптимизации целого. Верно и обратное утверждение.
Топологический метод и ХТС
Большая сложность современных ХТС, многомерность их как по числу составляющих элементов, так и по числу выполняемых ими функций, высокая степень взаимосвязанности и параметрического взаимовлияния элементов определяет возникновение при решении задачи анализа и синтеза схем ряда принципиальных трудностей научно-исследовательского, методологического и вычислительного характера. Эти трудности могут быть в некоторой степени преодолены при применении топологического метода анализа ХТС. Этот метод предоставляет возможность формализовать функциональную связь между топологическим представлением системы и количественными характеристиками функционирования системы. С помощью топологического метода анализа можно разрабатывать оптимальную стратегию решения задач анализа функционирования и оптимизации сложных систем.
Применение топологического метода анализа основано на рассмотрении математических топологических моделей систем, которыми являются потоковые и структурные графы. Применение топологических представлений позволяет большой объем существенной информации о сложной ХТС приводить к компактной и наглядной форме. Это уже само по себе дает возможность составить качественное представление о некоторых свойствах исследуемой системы.
Отметим, что с помощью потоковых и структурных графов можно представить физико-химическую структуру исходной смеси, особенности технологической топологии системы в целом и отдельных ее узлов, устанавливать связь между изменениями технологической структуры и количественными характеристиками ХТС.
Основные понятия и определения теории графов
Пусть дано множество Х, которое состоит из элементов, называемых точками. Дан закон, позволяющий установить соотношение Т между каждым элементом множества Х и некоторыми из его подмножеств. Обозначим через Тх некое подмножество множества Х, отвечающее элементу х множества Х. Две математические величины – «множество Х» и «соответствие Т» - определяют граф G, обозначаемый как G = (X, T). Элементы множества Х будем изображать точками, и называть вершинами графа. Соотношения Т будем изображать отрезками (иногда ориентированными), соединяющими элемент с элементами подмножества Тх, и называть ребрами или дугами графа. Граф G называется конечным, если число его вершин конечно. На рис.1,а показан граф, определяемый множеством
X = {x0, x1, x2, x3, x4, x5}.
а)
б)
в)
Рис.1. Различные графы: а – граф, определяемый множеством вершин Х = {x0, x1, …, x5}; б – нуль граф; в – граф, определяемый множеством вершин Х = {a, b, c, d}.
www.referatmix.ru
Методы оптимизации химико-технологических процессов - Справочник химика 21
Методы оптимизации химико-технологических процессов подробно рассмотрены в книге Бояринова и Кафарова [125]. [c.164]За последние годы стремительно развивается и совершенствуется теория математического моделирования химико-технологических процессов (ХТП) и химико-технологических систем (ХТС). Значительные успехи в области математического моделирования ХТП, разработки методов синтеза, анализа и оптимизации ХТС, появление мощных быстродействующих ЭВМ третьего и четвертого поколений позволили в настоящее время создать целый ряд автоматизированных систем проектирования (АСП) химических производств. [c.8]
При решении задач оптимизации химико-технологических процессов очень часто ограничения на управляющие переменные являются линейными. Часто они имеют характер простых ограничений на максимальные и минимальные значения соответствующих управляющих переменных (1,9). В схемах, как правило, имеются делители потоков, на коэффициенты деления которых налагаются линейные ограничения вида (1,7). Особенно много таких ограничений будет в задачах синтеза при применении метода структурных параметров (см. гл. VI). Конечно, для решения задачи оптимизации с линейными ограничениями, можно использовать общие методы, разработанные для случая произвольных ограничений. Однако этот случай можно рассматривать отдельно по двум причинам. Первая из них состоит в том, что в задачах, где имеются только линейные ограничения, удается построить более эффективные алгоритмы, используя линейный характер ограничений. Вторая причина состоит в следующем. Математические модели отдельных аппаратов часто могут работать только в некоторой допустимой области. Скажем, если во время оптимизационной процедуры концентраций какой-либо компоненты на входе реактора примет [c.149]За последние годы литература по научным основам химической технологии значительно обогатилась, особенно в части теории химических реакторов, математических методов моделирования и оптимизации химико-технологических процессов. При этом широко используется метод теоретических обобщений, так хорошо себя оправдавший в общеинженерном курсе процессов и аппаратов химической технологии. [c.5]
МЕТОДЫ ОПТИМИЗАЦИИ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ [c.73]
Одной из основных задач химической технологии является создание новых высокозффективных процессов и совершенствование уже действующих. Ее решение возможно только с помощью разработки и использования систем автоматизированного проектирования и оптимизации химико-технологических процессов. Системы автоматизированного проектирования уже внедряются в проектных и научно-исследовательских институтах, в конструкторских бюро. Их развитие обусловлено широким внедрением средств вычислительной техники и прикладного математического обеспечения. В основе таких систем лежит бурно развивающийся метод математического моделирования - изучение свойств объекта на математической модели. [c.4]
Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]
Основой методов оптимизации химико-технологических процессов служит достаточно подготовленный сейчас математический аппарат, средством реализации которого являются электронные вычислительные машины. На современном этапе важнейшая задача химической технологии заключается в составлении и использовании двух алгоритмов оптимального проектирования процесса и оптимального управления данным процессом. [c.9]
В книге обобщен отечественный и зарубежный опыт применения поисковых методов оптимизации для решения задач оптимизации химико-технологических процессов (ХТП). [c.7]
Для решения задач оптимизации химико-технологических процессов обычно используют методы нелинейного программирования (поисковые методы) [1, 3] и методы теории оптимального управления вариационного исчисления [4], динамического программирования 15], принципа максимума Понтрягина [6], дискретного принципа максимума 17]. Наибольшее распространение получили поисковые методы как наиболее гибкие и универсальные. Эти методы находят также широкое применение при решении задач идентификации (определение некоторых коэффициентов уравнений, представляющих собой математическую модель исследуемого процесса). Кроме того, поисковые методы могут быть эффективно использованы при синтезе оптимальной структуры химико-технологических систем, который в общем случае представляет собой задачу дискретно-непрерывного программирования в частности, они могут быть использованы при получении нижних оценок в методе ветвей и границ (см. гл. VI). [c.14]
Материал книги охватывает важнейшие проблемы современной инженерной химии приложение законов физической химии к решению инженерные задач, явления переноса массы, энергии и количества движения, вопросы теории подобия, теорию химических реакторов, проблемы нестационарные процессов. Специальные главы посвящены методам математической статистики и вопросам оптимизации химико-технологических процессов. [c.5]
Используются два метода математического описания химико-технологических процессов. Один основывается на изучении физикохимических закономерностей, другой — на теоретической возможности описания процесса при помощи тех или иных формальных математических выражений Вопрос о соотношении этих методов кратко изложен в конце данной главы (стр. 22) после анализа всех аспектов задачи оптимизации химико-технологических процессов. [c.17]
После рассмотрения всех основных аспектов задачи оптимизации химико-технологических процессов сравним теперь два упомянутых выше (см. стр. 17) метода составления математического описания. [c.22]
Реальные задачи оптимизации химико-технологических процессов обычно достаточно сложны, когда для определения / при данных значениях управляющих переменных приходится решать системы обыкновенных дифференциальных уравнений либо систему дифференциальных уравнений в частных производных, либо, наконец, некоторые совокупности таких систем. Поэтому применение первого метода для вычисления необходимых производных в ряде случаев может привести к очень большим временам счета. [c.83]
В третьей главе рассмотрен автоматизированный структурно-параметрический синтез гибких химико-технологических систем. Изложены задачи синтеза систем в условиях полной и неполной определенности информации. Отдельный параграф посвящен математическим методам и вычислительным алгоритмам структурно-параметрического синтеза систем дискретного типа. Изложены методы автоматической классификации технологических процессов, оптимизации технологической структуры и аппаратурного оформления химико-технологических систем периодического действия — алгоритмы эвристического типа, ветвей и границ , случайного поиска, геометрического программирования, комбинированные. [c.6]
Обсуждаются вопросы теории и методов расчета химических реакторов, а также проблемы оптимизации химико-технологических процессов. [c.4]
Для оптимизации химико-технологических процессов широко используется симплексный метод. Свое название метод получил от слова симплекс. Симплексом называется правильный многогранник, имеющий + вершину, где п — число факторов, являющихся ресурсами оптимизации. Так, если факторов два, то симплексом является правильный треугольник. Сущность симплексного метода оптимизации иллюстрирует рис. 24. [c.102]
Значения F, Ni, N2 и G выражаются через технологические и конструктивные параметры. С помощью приведенных выше уравнений F связывается с температурами и коэффициентом теплопередачи, который в свою очередь выражается через скорость жидкости. Последняя же является функцией расхода и конструктивных размеров (площади поперечного сечения, числа ходов). Мощность нагнетателей определяется гидравлическими сопротивлениями, которые с помощью известных формул выражаются через конструктивные размеры и расходы. Расход теплоносителя G связан с его температурами. Коэффициенты Пр, tii, щ, s, а также значения Тг и 3 находятся по прейскурантам, ценникам и на основании экономических расчетов. В результате получается система уравнений, в которой независимыми переменными являются конечная температура одной из жидкостей и конструктивные размеры, если рассматриваются теплообменники определенного типа. На основании анализа системы уравнений устанавливается сочетание параметров, обеспечивающих минимизацию функции П. Методы поиска оптимума рассматриваются в специальной литературе, посвященной оптимизации химико-технологических процессов. Если [c.351]
В книге в доступной для химиков форме изложены современные методы математической статистики, применяемые при разработке и оптимизации химико-технологических процессов на различных стадиях исследования. Книга состоит из двух частей. В первой части приведены различные способы математической статистики и статистического планирования экспериментов, включая практические рекомендации и числовые примеры. Вторая часть книги содержит примеры исследования и оптимизации процессов из различных областей химии и химической технологии. В приложении даны необходимые сведения из смежных разделов математики. [c.223]
Этот метод может быть также применен для расчета химических процессов в аппаратах химической технологии. Использование уравнений типа (П.35), (П.54) позволяет решать задачи регулирования и оптимизации химико-технологических процессов, так как скорость образования каждого продукта реакции в значительной степени зависит от скорости и температуры потока. Учитывая кинетические закономерности химических реак- [c.51]
Бурный рост химической промышленности в послевоенные годы обусловил пересмотр способов исследования и оптимизации химико-технологических процессов. Применявшиеся ранее для изучения многофакторных химических процессов однофакторные методы не гарантировали оптимальности разработанных режимов, требовали длительного времени, давали недостаточное количество информации об изучаемом объекте. Все это явилось одной из основных причин быстрого развития и внедрения в практику статистических методов планирования экстремальных экспериментов. [c.7]
При создании крупнотоннажных агрегатов производства аммиака используются результаты научных исследований в области кибернетики химико-технологических процессов, методов оптимизации и синтеза замкнутых энерготехнологических сп-стем. [c.200]
Разработанные обобщенные алгоритмы моделирования и оптимизации систем разделения с использованием методов гомотопии вошли в состав системы автоматизированного расчета химико-технологических процессов. [c.277]
Основной метод исследования ХТС — математическое моделирование, опирающееся на широкое использование ЭВМ. Оно открыло перед исследователями большие возможности в деле разработки математических описаний химико-технологических процессов и применения их для расчета и оптимизации ХТС. При моделировании ХТС наряду с моделями отдельных аппаратов используют модель всей системы. Необходимость последней обусловлена тем, что процессы, протекающие в отдельных аппаратах, влияют друг на друга. В силу этого оптимизация отдельно взятого аппарата без учета его связей с остальными аппаратами может привести к тому, что весь технологический процесс в целом будет протекать не в оптимальном режиме. [c.3]
Для моделирования химико-технологических процессов, диагностики неполадок в производстве и оптимизации процессов по качеству конечных продуктов в последние годы все шире применяют методы распознавания образов и логико-структурный подход к анализу многомерных данных [97, 98]. Теория распознавания образов и логическое моделирование основаны на сочетании идей факторного анализа с некоторыми методами алгебры логики, в частности, методами минимизации булевых функций, предназначенными для извлечения информации из больших массивов данных. [c.241]
На основании сказанного цель авторов состояла в том, чтобы дать представление о некоторых основных классах задач оптимизации в химической технологии, рассказать в доступной для инженеров форме о развитых в самое пос-теднее время методах оптимизации, показать их сравнительную эффективность как при решении тестовых, так и реальных практических задач оптимизации химико-технологических процессов.- [c.8]
Известно, что основной целью математического моделирования является оптимизация химико-технологических процессов. В книге Р. Фрэнкса вопросы оптимизации только затрагиваются, но практически не решаются. Это — следующий этап, требующий знания специальных разделов математики. В отечественной и зарубежной технической литературе имеется ряд работ, посвященных отдельным вопросам оптимизации химико-технологических процессов. Систематическое изложение этих вопросов читатель найдет в недавно выпущенной издательством Химия книге А. И. Бояринова и В. В. Кафа-рова Методы оптимизации в химической технологии . [c.10]
Слинько М. Г., Моделирование химических реакторов, Новосиб,, 1968 Островский Г, М,, Волин Ю, М., Моделирование сложных химмко-техно логических схем. М., 197.5 Б о я р и н (I н Л, И,, К а (Ь а р о в В, В,, Методы оптимизации и химической текнологии, 2 изд,, М,, 197а Остров-с к и й Г, М,, Бережинский Т, А,, Беляева А, Р., Алгоритмы оптимизации химико-технологических процессов, М,, 1978, Г. М. Островский. [c.411]
Зиганшин Г.К., Осинцев А.А. Изучение влияния на селективность фенола в процессе многоступенчатой экстракции различных способов создания рисайкла // V международная научная конференция Методы кибернетики химико-технологических процессов (КХТП-У-99).-Т. 2-Кн. Г Математическое моделирование и оптимизация химикотехнологических процессов. Синтез и оптимизация технологических систем Тез. докл., 21-22 июня 1999 г. - Уфа Изд-во УГНТУ, 1999. - С. 123-124. [c.31]
Так появилась необходимость в дальнейшем усовершенствовании науки о химической технологии, а по существу в развитии нового научного направления по созданию теоретических основ химической технологии. Его основная задача — разработка методов нахождения оптимальных инженерных решений на базе системного подхода, т. е. рассмотрения химического производства как сложной системы, состоящей из большого числа взаимодействующих типовых процессов, на основе детального анализа закономерностей протекания этих процессов. Возникли новые научные дисциплины химическая кибернетика, оптимизация химико-технологических процессов и др. Все они опираются на закономерности протекания типовых процессов химической технологии. Теоретические основы химической технологии в нашей стране разрабатываются Н. М. Жаворонковым, В. В. Кафаровым, В. А. Малюсовым и многими другими учеными. [c.8]
Для широкого распространения методов планирования эксперимента среди исследователей крайне необходимы методические руководства, написанные в доступной форме. Эту мысль неоднократно высказывал заведующий кафедрой математического моделирования и оптимизации химико-технологических процессов ЛТИ имени Ленсовета профессор Петр Альфредович Кулле. Работа над данной брошюрой была начата по его инициативе. Посвящая этот небольшой труд его светлой памяти, автор может лишь в малой степени выразить дань тому глубокому уважению, которым пользовался среди нас этот замечательный человек и ученый. [c.4]
В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]
Среди многообразия процессов химической технологии значительное место занимают процессы массообмена. По существу почти любой химико-технологический процесс в той или иной степени сопровождается явлениями массопередачи. Однако имеется большая группа процессов, для которых массонередача является основным фактором, определяющим их назначение. Примерами таких процессов служат ректификация, экстракция, абсорбция, десорбции и т. д., где лшссообмеи ироисходит между различными фазами, в результате чего достигается обогащение одной фазы одним или несколькими компонентами. В настоящее время ироцессы массоиередачи интенсивно исследуют методами математического моделирования что позволяет использовать методы оптимизации для оптимальной организации этих процессов. [c.66]
Если, однако, из-за большого вычислительного времени (алгоритмы координирования требуют много вычислительного времени) или из-за малости ожидаемого экономического эффекта применение специальных алгоритмов кородинирования невозможно, то рекомендуется измерять величины Ху,и Уд I, и подавать в программу управления. Такой подход рекомендуется и тогда, когда математическая модель одной подсистемы, которая включается в координирование, недостаточно адекватна реальному химико-технологическому процессу, чтобы осуществить оптимизацию только с помощью математической модели. Применение уравнения (IX.31) с использованием измеренных величин ЛС , и у , ведет в любом случае к запаздыванию при определении и реализации оптимальных управлений Иг,ь. Такое запаздывание нельзя скомпенсировать никакими средствами. В этом случае можно определить экономические потери, если применить методы, описанные в разд. IX.3.1. [c.361]
chem21.info
Оптимизация химико-технологических процессов - реферат, курсовая работа, диплом, 2017
Главная » Рефераты » Текст работы «Оптимизация химико-технологических процессов - Химия»
ОПТИМИЗАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
- В в е д е н и е -
Процессы химической технологии это сложные физико-химические процессы, протекающие как в пространстве, так и во времени. В них участвуют потоки энергии (тепло и холод) и многофазные и многокомпонентные потоки вещества.
При разработке схемы конкретного процесса химической технологии следует, путем оптимизации, найти наилучший (по принятому критерию) вариант решения из конечного множества альтернативных. Такой путь выбора варианта схемы часто называют синтезом схем. Синтезу схем предшествует физико-химическое исследование исходной смеси, проводимое с целью выявления ограничений на получение требуемых (конечных) продуктов. Такое исследование можно назвать предсинтезом схем. Предсинтез схем позволяет в большинстве случаев как существенно снизить размерность оптимизируемого множества альтернативных вариантов, так и на самом начальном уровне отбросить нереализующиеся варианты при синтезе оптимальных схем. Еще одним этапом разработки схемы химико-технологического процесса (ХТП) является выбор оптимальных вариантов конструкции и функционирования конкретных аппаратов и узлов схемы.
Разработку схемы химико-технологического процесса можно рассматривать как иерархическую задачу, разделив ее на несколько уровней иерархии. При этом результаты более низкого уровня определяют результаты на более высоком уровне, а при неоднозначности решения на более высоком уровне возможен возврат на более низкий. Каждый уровень иерархии может состоять из нескольких подуровней связанных или не связанных между собой обратными связями.
Целью настоящего курса по оптимизации построения ХТП является не столько научить набору стандартных решений, сколько научить думать, анализировать задачу, уметь искать решения и оценивать их результаты. Что это значит в наших конкретных обстоятельствах? Имея информацию о цели, исходных веществах, наборе ограничений, возможной совокупности воздействий на систему, сформулировать частные и общие критерии оптимизации и найти «лучший из возможных» вариантов.
Определения
Сформулируем некоторые полезные определения. Химико-технологическая система (ХТС) - это совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в котоҏыҳ осуществляется определенная последовательность технологических оᴨȇраций (подготовка сырья, собственно химическое превращение, выделение целевых продуктов). Элемент ХТС - это аппарат, в котором протекает какой-либо типовой химико-технологический процесс.
Входными ᴨȇременными (параметрами) ХТС являются физические параметры входных потоков сырья или исходных продуктов, а также параметры различных физико-химических воздействий окружающей среды на процесс функционирования ХТС. Входные ᴨȇременные по характеру воздействия на ХТС можно разделить на три типа. I. Неизменные входные параметры. Ими называются такие параметры, значения котоҏыҳ могут быть измерены, но возможность воздействия, на которые отсутствует. Значения указанных параметров не зависят от режима процесса (например, состав исходного сырья). II. Управляющие параметры. Это такие параметры, на которые можно оказывать прямое воздействие в соответствии с теми или иными требованиями, что позволяет управлять процессом (например, регулируемое давление в реакторе). III. Возмущающие параметры. Такими называются параметры, значения котоҏыҳ случайным образом изменяются с течением времени и которые недоступны для измерения (например, различные примеси в исходном сырье).
Выходные параметры. Под выходными понимаются параметры, величины котоҏыҳ определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмущающих параметров. Иногда выходные параметры называют также, параметрами состояния. Подчеркивая тем самым их назначение описывать состояние процесса.
Отметим, что действие возмущающих параметров проявляется в том, что параметры состояния процесса при известной совокупности входных и управляющих параметров определяются неоднозначно. Процессы, для котоҏыҳ влияние случайных возмущений велико называют стохастическими. В обратном случае - детерминированными.
Для изучения стохастических процессов обычно используют математический аппарат теории вероятностей. С его помощью параметры состояния оцениваются в терминах математического ожидания, а возмущающие параметры характеризуются вероятностными законами распределения. В теории оптимизации работают, как правило, с детерминированными процессами.
Для детерминированных моделей зависимость выходных параметров от входных и управляющих можно записать в виде:
xвых = ц (xвх, u) ( 1 )
Критерий оптимальности детерминированного процесса представляется как функция входных, выходных и управляющих параметров:
R = R(xвх, xвых, u) ( 2 )
Параметры ХТС и параметры технологического режима элементов обуславливают характер процесса функционирования системы, т.е. некоторый закон изменения состояния системы. Параметры ХТС подразделяются на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (например, диаметр и высота слоя насадки в массообменном аппарате). К технологическим параметрам ХТС относятся коэффициенты стеᴨȇней превращения и стеᴨȇней разделения химических компонентов, коэффициенты тепло- и массоᴨȇредачи, константы скоростей химических реакций и т.д.
Параметрами технологического режима элементов ХТС называют совокупность основных факторов (параметров) внутри элемента (темᴨȇратура, давление, применение и активность катализатора, флегмовое число), которые влияют на скорость технологического процесса, выход и качество химических продуктов.
Следует различать параметрическую оптимизацию (оптимизация параметров физико-химических или эмпирических моделей природы процесса), оптимизацию технологического процесса, оптимизацию схемы, оптимизацию управления процессом и оптимизацию самого процесса выбора.
Следует различать оптимизацию ХТС на стадии проектирования и на стадии реконструкции (в связи с тем, что значительная часть оборудования не может быть заменена, возникает большое количество дополнительных граничных условий).
Критерии оптимизации
Для обозначения показателя, экстремум которого соответствует оптимальному решению, используется большой набор терминов: функция цели (целевая функция), функция отклика, параметр оптимизации, критерий оптимизации и др. Чаще всего эти термины рассматриваются как синонимы.
Понятие критерий оптимизации необходимо четко различать с понятием цель оптимизации. Целью оптимизации в ХТП является получение заданного продукта (вещества) с заданными параметрами (например, состав). С понятиями критерий оптимизации и цель оптимизации тесно связаны такие понятия как граничные условия по входным, выходным и управляющим параметрам системы. Граничными условиями мы будем называть такие в рамках, котоҏыҳ могут варьироваться входные, выходные и управляющие параметрам системы (например, темᴨȇратура как управляющий параметр процесса может варьироваться только в определенном диапазоне). Критерий оптимизации имеет смысл, если при его определении учтены граничные условия по входным, выходным и управляющим параметрам системы.
Выбор критерия оптимизации является одним из ᴨȇрвых и ответственных этапов работ по выбору оптимальных решений. В самом деле, прежде чем искать наилучшее, наивыгоднейшее решение той или иной задачи, необходимо четко определить, что мы будем понимать под понятием «наивыгоднейшее». Выбор критерия недостаточно полно отражающего постановку задачи, может привести к серьезным просчетам, приводящим в последствии к не достижению цели оптимизации.
Обычно считается, что как при разработке и проектировании производства, так и при управлении им, оптимальным является решение, обесᴨȇчивающее наибольшую экономическую эффективность производства. Для самостоятельного производственного комплекса, исходные и конечные продукты которого являются товарными, это положение стало общепризнанным. В случае отдельных аппаратов и узлов технологической схемы наряду с критерием эффективности используют и так называемые «технологические» критерии.
Основная трудность в формировании экономического критерия оптимизации обусловлена тем, что из математической постановки задачи вытекает требование использовать в качестве критерия единственный обобщенный показатель. В то же время экономическая эффективность производства имеет множество частных асᴨȇктов, и для их оценки применяются многочисленные самостоятельные показатели, в том числе такие, как производительность, себестоимость продукции, прибыль, рентабельность и др.
Важно отметить, что при выборе обобщенного показателя речь идет не только об учете в той или иной стеᴨȇни нескольких асᴨȇктов экономической эффективности, но и о сопоставлении их в эквивалентных соотношениях, которые позволяли бы соизмерять выигрыш за счет улучшения одних показателей с проигрышем за счет ухудшения других.
Необходимость такого сопоставления вытекает из компромиссного характера большинства задач оптимизации. Компромиссный характер оптимизации обусловлен тем, что варьирование параметров в окрестностях оптимума приводит, как правило, к благоприятному изменению лишь некотоҏыҳ частных показателей эффективности и одновременно сопровождается неблагоприятным изменением остальных частных показателей. Так, например, при снижении себестоимости продукции, вследствие более полной конверсии исходных продуктов реакции, требуется увеличение объема реактора, т.е. происходит рост капитальных затрат. Увеличение чистоты продукта, при прочих равных условиях, часто может быть достигнуто при увеличении капитальных и эксплуатационных затрат по узлу разделения. Следует отметить, что в некотоҏыҳ случаях оптимальный компромисс может находиться за пределами допустимых значений варьируемых параметров, ограниченных теми или иными техническими условиями, требованиями безопасности и т.п.
Из множества частных показателей эффективности производства можно выделить основные экономические параметры, которые при заданных ценах и нормативных показателях однозначно определяют значения подавляющего большинства остальных показателей. Часто главными экономическими параметрами выбирают следующие:
1. Количество реализованной продукции В т/год. Для n видов продукции {Bj}, где j = 1, …, n.
2. Качество продукции, которое по каждому из конечных продуктов может оцениваться совокупностью pj физических или физико-химических параметров, например темᴨȇратура плавления, содержание примесей, мутность раствора и т.п.
3. Эксплуатационные, т.е. регулярные затраты на производство продукции.
4. Капитальные, т.е. единовременные затраты, включая затраты на создание необходимых для функционирования производства оборотных фондов.
Как правило, варьируя их в тех или иных пропорциях, получают обобщенный критерий эффективности производства.
Сформулированному обобщенному критерию оптимизации схемы в целом не должны противоречить критерии оптимального функционирования отдельных ее составных частей. Локальные критерии оптимизации должны, с одной стороны, выбираться автономно для данного узла или аппарата, но сдругой стороны не вступать в конфликт с глобальным критерием. Известно, что совокупность оптимальных критериев составных частей общего не обязательно дает совокупный критерий оптимизации целого. Верно и обратное утверждение.
Топологический метод и ХТС
Большая сложность современных ХТС, многомерность их как по числу составляющих элементов, так и по числу выполняемых ими функций, высокая стеᴨȇнь взаимосвязанности и параметрического взаимовлияния элементов определяет возникновение при решении задачи анализа и синтеза схем ряда принципиальных трудностей научно-исследовательского, методологического и вычислительного характера. Эти трудности могут быть в некоторой стеᴨȇни преодолены при применении топологического метода анализа ХТС. Этот метод предоставляет возможность формализовать функциональную связь между топологическим представлением системы и количественными характеристиками функционирования системы. С помощью топологического метода анализа можно разрабатывать оптимальную стратегию решения задач анализа функционирования и оптимизации сложных систем.
Применение топологического метода анализа основано на рассмотрении математических топологических моделей систем, которыми являются потоковые и структурные графы. Применение топологических представлений позволяет большой объем существенной информации о сложной ХТС приводить к компактной и наглядной форме. Это уже само по себе дает возможность составить качественное представление о некотоҏыҳ свойствах исследуемой системы.
Отметим, что с помощью потоковых и структурных графов можно представить физико-химическую структуру исходной смеси, особенности технологической топологии системы в целом и отдельных ее узлов, устанавливать связь между изменениями технологической структуры и количественными характеристиками ХТС.
Основные понятия и определения теории графов
Пусть дано множество Х, которое состоит из элементов, называемых точками. Дан закон, позволяющий установить соотношение Т между каждым элементом множества Х и некоторыми из его подмножеств. Обозначим через Тх некое подмножество множества Х, отвечающее элементу х множества Х. Две математические величины - «множество Х» и «соответствие Т» - определяют граф G, обозначаемый как G = (X, T). Элементы множества Х будем изображать точками, и называть вершинами графа. Соотношения Т будем изображать отрезками (иногда ориентированными), соединяющими элемент с элементами подмножества Тх, и называть ребрами или дугами графа. Граф G называется конечным, если число его вершин конечно. На рис.1,а показан граф, определяемый множеством
X = {x0, x1, x2, x3, x4, x5}.
а)
б)
в)
Рис.1. Различные графы: а - граф, определяемый множеством вершин Х = {x0, x1, …, x5}; б - нуль граф; в - граф, определяемый множеством вершин Х = {a, b, c, d}.
Перейти в список рефератов, курсовых, контрольных и дипломов по дисциплине Химия
referatwork.ru
Оптимизация химико технологических процессов
ОПТИМИЗАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ Введение Процессы химической технологии это сложные физико-химические процессы, протекающие как в пространстве, так и во времени. В них участвуют потоки энергии (тепло и холод) и многофазные и многокомпонентные потоки вещества. При разработке схемы конкретного процесса химической технологии следует, путем оптимизации, найти наилучший (по принятому критерию) вариант решения из конечного множества альтернативных. Такой путь выбора варианта схемы часто называют синтезом схем. Синтезу схем предшествует физико-химическое исследование исходной смеси, проводимое с целью выявления ограничений на получение требуемых (конечных) продуктов. Такое исследование можно назвать предсинтезом схем. Предсинтез схем позволяет в большинстве случаев как существенно снизить размерность оптимизируемого множества альтернативных вариантов, так и на самом начальном уровне отбросить нереализующиеся варианты при синтезе оптимальных схем. Еще одним этапом разработки схемы химико-технологического процесса (ХТП) является выбор оптимальных вариантов конструкции и функционирования конкретных аппаратов и узлов схемы. Разработку схемы химико-технологического процесса можно рассматривать как иерархическую задачу, разделив ее на несколько уровней иерархии. При этом результаты более низкого уровня определяют результаты на более высоком уровне, а при неоднозначности решения на более высоком уровне возможен возврат на более низкий. Каждый уровень иерархии может состоять из нескольких подуровней связанных или не связанных между собой обратными связями. Целью настоящего курса по оптимизации построения ХТП является не столько научить набору стандартных решений, сколько научить думать, анализировать задачу, уметь искать решения и оценивать их результаты. Что это значит в наших конкретных обстоятельствах? Имея информацию о цели, исходных веществах, наборе ограничений, возможной совокупности воздействий на систему, сформулировать частные и общие критерии оптимизации и найти «лучший из возможных» вариантов. Определения Сформулируем некоторые полезные определения. Химико-технологическая система (ХТС) – это совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в которых осуществляется определенная последовательность технологических операций (подготовка сырья, собственно химическое превращение, выделение целевых продуктов). Элемент ХТС – это аппарат, в котором протекает какой-либо типовой химико-технологический процесс. Входными переменными (параметрами) ХТС являются физические параметры входных потоков сырья или исходных продуктов, а также параметры различных физико-химических воздействий окружающей среды на процесс функционирования ХТС. Входные переменные по характеру воздействия на ХТС можно разделить на три типа. I. Неизменные входные параметры. Ими называются такие параметры, значения которых могут быть измерены, но возможность воздействия, на которые отсутствует. Значения указанных параметров не зависят от режима процесса (например, состав исходного сырья). II. Управляющие параметры. Это такие параметры, на которые можно оказывать прямое воздействие в соответствии с теми или иными требованиями, что позволяет управлять процессом (например, регулируемое давление в реакторе). III. Возмущающие параметры. Такими называются параметры, значения которых случайным образом изменяются с течением времени и которые недоступны для измерения (например, различные примеси в исходном сырье). Выходные параметры. Под выходными понимаются параметры, величины которых определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмущающих параметров. Иногда выходные параметры называют также, параметрами состояния. Подчеркивая тем самым их назначение описывать состояние процесса. Отметим, что действие возмущающих параметров проявляется в том, что параметры состояния процесса при известной совокупности входных и управляющих параметров определяются неоднозначно. Процессы, для которых влияние случайных возмущений велико называют стохастическими. В обратном случае – детерминированными. Для изучения стохастических процессов обычно используют математический аппарат теории вероятностей. С его помощью параметры состояния оцениваются в терминах математического ожидания, а возмущающие параметры характеризуются вероятностными законами распределения. В теории оптимизации работают, как правило, с детерминированными процессами. Для детерминированных моделей зависимость выходных параметров от входных и управляющих можно записать в виде: xвых = φ (xвх, u) ( 1 ) Критерий оптимальности детерминированного процесса представляется как функция входных, выходных и управляющих параметров: R = R(xвх, xвых, u) ( 2 ) Параметры ХТС и параметры технологического режима элементов обуславливают характер процесса функционирования системы, т.е. некоторый закон изменения состояния системы. Параметры ХТС подразделяются на конструкционные и технологические. Конструкционными параметрами ХТС являются геометрические характеристики аппаратурного оформления элементов системы (например, диаметр и высота слоя насадки в массообменном аппарате). К технологическим параметрам ХТС относятся коэффициенты степеней превращения и степеней разделения химических компонентов, коэффициенты тепло- и массопередачи, константы скоростей химических реакций и т.д. Параметрами технологического режима элементов ХТС называют совокупность основных факторов (параметров) внутри элемента (температура, давление, применение и активность катализатора, флегмовое число), которые влияют на скорость технологического процесса, выход и качество химических продуктов. Следует различать параметрическую оптимизацию (оптимизация параметров физико-химических или эмпирических моделей природы процесса), оптимизацию технологического процесса, оптимизацию схемы, оптимизацию управления процессом и оптимизацию самого процесса выбора. Следует различать оптимизацию ХТС на стадии проектирования и на стадии реконструкции (в связи с тем, что значительная часть оборудования не может быть заменена, возникает большое количество дополнительных граничных условий). Критерии оптимизации Для обозначения показателя, экстремум которого соответствует оптимальному решению, используется большой набор терминов: функция цели (целевая функция), функция отклика, параметр оптимизации, критерий оптимизации и др. Чаще всего эти термины рассматриваются как синонимы. Понятие критерий оптимизации надо четко различать с понятием цель оптимизации. Целью оптимизации в ХТП является получение заданного продукта (вещества) с заданными параметрами (например, состав). С понятиями критерий оптимизации и цель оптимизации тесно связаны такие понятия как граничные условия по входным, выходным и управляющим параметрам системы. Граничными условиями мы будем называть такие в рамках, которых могут варьироваться входные, выходные и управляющие параметрам системы (например, температура как управляющий параметр процесса может варьироваться только в определенном диапазоне). Критерий оптимизации имеет смысл, если при его определении учтены граничные условия по входным, выходным и управляющим параметрам системы. Выбор критерия оптимизации является одним из первых и ответственных этапов работ по выбору оптимальных решений. В самом деле, прежде чем искать наилучшее, наивыгоднейшее решение той или иной задачи, необходимо четко определить, что мы будем понимать под понятием «наивыгоднейшее». Выбор критерия недостаточно полно отражающего постановку задачи, может привести к серьезным просчетам, приводящим в последствии к не достижению цели оптимизации. Обычно считается, что как при разработке и проектировании производства, так и при управлении им, оптимальным является решение, обеспечивающее наибольшую экономическую эффективность производства. Для самостоятельного производственного комплекса, исходные и конечные продукты которого являются товарными, это положение стало общепризнанным. В случае отдельных аппаратов и узлов технологической схемы наряду с критерием эффективности используют и так называемые «технологические» критерии. Основная трудность в формировании экономического критерия оптимизации обусловлена тем, что из математической постановки задачи вытекает требование использовать в качестве критерия единственный обобщенный показатель. В то же время экономическая эффективность производства имеет множество частных аспектов, и для их оценки применяются многочисленные самостоятельные показатели, в том числе такие, как производительность, себестоимость продукции, прибыль, рентабельность и др. Важно отметить, что при выборе обобщенного показателя речь идет не только об учете в той или иной степени нескольких аспектов экономической эффективности, но и о сопоставлении их в эквивалентных соотношениях, которые позволяли бы соизмерять выигрыш за счет улучшения одних показателей с проигрышем за счет ухудшения других. Необходимость такого сопоставления вытекает из компромиссного характера большинства задач оптимизации. Компромиссный характер оптимизации обусловлен тем, что варьирование параметров в окрестностях оптимума приводит, как правило, к благоприятному изменению лишь некоторых частных показателей эффективности и одновременно сопровождается неблагоприятным изменением остальных частных показателей. Так, например, при снижении себестоимости продукции, вследствие более полной конверсии исходных продуктов реакции, требуется увеличение объема реактора, т.е. происходит рост капитальных затрат. Увеличение чистоты продукта, при прочих равных условиях, часто может быть достигнуто при увеличении капитальных и эксплуатационных затрат по узлу разделения. Следует отметить, что в некоторых случаях оптимальный компромисс может находиться за пределами допустимых значений варьируемых параметров, ограниченных теми или иными техническими условиями, требованиями безопасности и т.п. Из множества частных показателей эффективности производства можно выделить основные экономические параметры, которые при заданных ценах и нормативных показателях однозначно определяют значения подавляющего большинства остальных показателей. Часто главными экономическими параметрами выбирают следующие: 1. Количество реализованной продукции В т/год. Для n видов продукции {Bj}, где j = 1, …, n. 2. Качество продукции, которое по каждому из конечных продуктов может оцениваться совокупностью pj физических или физико-химических параметров, например температура плавления, содержание примесей, мутность раствора и т.п. 3. Эксплуатационные, т.е. регулярные затраты на производство продукции. 4. Капитальные, т.е. единовременные затраты, включая затраты на создание необходимых для функционирования производства оборотных фондов. Как правило, варьируя их в тех или иных пропорциях, получают обобщенный критерий эффективности производства. Сформулированному обобщенному критерию оптимизации схемы в целом не должны противоречить критерии оптимального функционирования отдельных ее составных частей. Локальные критерии оптимизации должны, с одной стороны, выбираться автономно для данного узла или аппарата, но сдругой стороны не вступать в конфликт с глобальным критерием. Известно, что совокупность оптимальных критериев составных частей общего не обязательно дает совокупный критерий оптимизации целого. Верно и обратное утверждение. Топологический метод и ХТС Большая сложность современных ХТС, многомерность их как по числу составляющих элементов, так и по числу выполняемых ими функций, высокая степень взаимосвязанности и параметрического взаимовлияния элементов определяет возникновение при решении задачи анализа и синтеза схем ряда принципиальных трудностей научно-исследовательского, методологического и вычислительного характера. Эти трудности могут быть в некоторой степени преодолены при применении топологического метода анализа ХТС. Этот метод предоставляет возможность формализовать функциональную связь между топологическим представлением системы и количественными характеристиками функционирования системы. С помощью топологического метода анализа можно разрабатывать оптимальную стратегию решения задач анализа функционирования и оптимизации сложных систем. Применение топологического метода анализа основано на рассмотрении математических топологических моделей систем, которыми являются потоковые и структурные графы. Применение топологических представлений позволяет большой объем существенной информации о сложной ХТС приводить к компактной и наглядной форме. Это уже само по себе дает возможность составить качественное представление о некоторых свойствах исследуемой системы. Отметим, что с помощью потоковых и структурных графов можно представить физико-химическую структуру исходной смеси, особенности технологической топологии системы в целом и отдельных ее узлов, устанавливать связь между изменениями технологической структуры и количественными характеристиками ХТС. Основные понятия и определения теории графов Пусть дано множество Х, которое состоит из элементов, называемых точками. Дан закон, позволяющий установить соотношение Т между каждым элементом множества Х и некоторыми из его подмножеств. Обозначим через Тх некое подмножество множества Х, отвечающее элементу х множества Х. Две математические величины – «множество Х» и «соответствие Т» - определяют граф G, обозначаемый как G = (X, T). Элементы множества Х будем изображать точками, и называть вершинами графа. Соотношения Т будем изображать отрезками (иногда ориентированными), соединяющими элемент с элементами подмножества Тх, и называть ребрами или дугами графа. Граф G называется конечным, если число его вершин конечно. На рис.1,а показан граф, определяемый множеством X = {x0, x1, x2, x3, x4, x5}. SHAPE \* MERGEFORMAT а) б) SHAPE \* MERGEFORMAT в) Рис.1. Различные графы: а – граф, определяемый множеством вершин Х = {x0, x1, …, x5}; б – нуль граф; в – граф, определяемый множеством вершин Х = {a, b, c, d}.www.referatnatemu.com