Оптимизация (информатика). Оптимизация кода это
performance - Оптимизация кода - Qaru
Все хорошие ответы.
Я бы уточнил часть меры. Я выполняю измерение с целью количественного определения любых улучшений, которые я мог бы сделать. Однако, чтобы найти то, что нужно исправить (и это другая цель), я получаю несколько образцов стека вызовов вручную.
Предположим, что для простоты программа выполняет 20 гигабайт для запуска, когда требуется 10. Если я сделаю паузу 10 раз в случайном порядке, то в 5 из этих случаев, более или менее, это будет в одном из этих ненужных циклов. Я вижу, нужен ли цикл, просматривая каждый уровень стека вызовов. Если любая команда вызова на любом уровне стека может быть устранена, тогда цикл не нужен. Если такая команда появляется в нескольких стеках, то ее будет ускорять программу на величину, которая составляет примерно процент от количества образцов стека, которые он включен.
Любая инструкция, которая отображается на нескольких стеках, является подозрительной - чем больше стеков, тем больше подозрений. Теперь call _main, вероятно, не тот, который я могу удалить, но foo.cpp:96 call std::vector::iterator:++ если он отображается на нескольких стеках, определенно является фокусом внимания.
Можно, по причинам стиля, не хотеть его заменять, но каждый будет знать, какую цену в производительности платят за этот выбор.
Таким образом, оптимизация состоит в выявлении подозреваемых и поиске способа их замены или устранения.
Жесткая часть (и я делал это много раз) понимает, что необходимо, а что нет. Для этого вы поймете понимание того, как и почему в этой программе делаются вещи, поэтому, если какая-либо деятельность является циклическим, вы можете знать, как ее безопасно заменить.
Некоторые велосипедисты могут быть легко исправлены, но вы быстро столкнетесь с теми, которые вы не знаете, как безопасно заменить. Для этого вам нужно лучше ознакомиться с кодом.
Это поможет, если вы сможете выбрать мозг того, кто уже работал над программой.
В противном случае (при условии, что код составляет ~ 10 ^ 6 строк, например, я работал) вы можете получить некоторый ускорение довольно легко, но чтобы выйти за рамки этого, может потребоваться несколько месяцев, чтобы добраться туда, где вам удобно делать значительные изменения.
qaru.site
Реферат Оптимизация кода
скачатьРеферат на тему:
План:
- Введение
- 1 Основы
- 1.1 Компромиссы (tradeoff)
- 1.2 Различные области
- 1.3 Узкие места
- 2 Простейшие приёмы оптимизации программ по затратам процессорного времени
- 2.1 Инициализация объектов данных
- 2.2 Программирование арифметических операций
- 2.3 Циклы
- 2.4 Инвариантные фрагменты кода
- 3 Приоритеты оптимизации Литература
Введение
Эта статья об оптимизации программ и данных вообще;об оптимизациях, применяемых компиляторами см.: Оптимизация компилятора.
Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, набором компьютеров или даже целой сетью, такой как Интернет.
Хотя целью оптимизации является получение оптимальной системы, истинно оптимальная система в процессе оптимизации достигается далеко не всегда. Оптимизированная система обычно является оптимальной только для одной задачи или группы пользователей: где-то может быть важнее уменьшение времени, требуемого программе для выполнения работы, даже ценой потребления большего объёма памяти; в приложениях, где важнее память, могут выбираться более медленные алгоритмы с меньшими запросами к памяти.
Более того, зачастую не существует универсального решения, которое работает хорошо во всех случаях, поэтому инженеры используют компромиссные (англ. tradeoff) решения для оптимизации только ключевых параметров. К тому же, усилия, требуемые для достижения полностью оптимальной программы, которую невозможно дальше улучшить, практически всегда превышают выгоду, которая может быть от этого получена, поэтому, как правило, процесс оптимизации завершается до того, как достигается полная оптимальность. К счастью, в большинстве случаев даже при этом достигаются заметные улучшения.
Оптимизация должна проводиться с осторожностью. Тони Хоар впервые произнёс, а Дональд Кнут впоследствии часто повторял известное высказывание: «Преждевременная оптимизация — это корень всех бед». Очень важно иметь для начала озвученный алгоритм и работающий прототип.
1. Основы
Некоторые задачи часто могут быть выполнены более эффективно. Например, программа на языке Си, которая суммирует все целые числа от 1 до N:
int i, sum = 0; for (i = 1; i <= N; i++) sum += i;Подразумевая, что здесь нет переполнения, этот код может быть переписан в следующем виде с помощью соответствующей математической формулы:
int sum = (N * (N+1)) / 2;Понятие «оптимизация» обычно подразумевает, что система сохраняет ту же самую функциональность. Однако, значительное улучшение производительности часто может быть достигнуто и с помощью удаления избыточной функциональности. Например, если допустить, что программе не требуется поддерживать более, чем 100 элементов при вводе, то возможно использовать статическое выделение памяти вместо более медленного динамического.
1.1. Компромиссы (tradeoff)
Оптимизация в основном фокусируется на одиночном или повторном времени выполнения, использовании памяти, дискового пространства, пропускной способности или некотором другом ресурсе. Это обычно требует компромиссов — один параметр оптимизируется за счёт других. Например, увеличение размера программного кеша чего-либо улучшает производительность времени выполнения, но также увеличивает потребление памяти. Другие распространённые компромиссы включают прозрачность кода и его выразительность, почти всегда ценой деоптимизации. Сложные специализированные алгоритмы требуют больше усилий по отладке и увеличивают вероятность ошибок.
1.2. Различные области
В исследовании операций, оптимизация — это проблема определения входных значений функции, при которых она имеет максимальное или минимальное значение. Иногда на эти значения накладываются ограничения, такая задача известна как ограниченная оптимизация.
В программировании, оптимизация обычно обозначает модификацию кода и его установок компиляции для данной архитектуры для производства более эффективного ПО.
Типичные проблемы имеют настолько большое количество возможностей, что программисты обычно могут позволить использовать только «достаточно хорошее» решение.
1.3. Узкие места
Для оптимизации требуется найти узкое место (англ. hotspot), иногда называемое бутылочным горлышком (англ. bottleneck): критическую часть кода, которая является основным потребителем необходимого ресурса. Улучшение примерно 20 % кода иногда влечёт за собой изменение 80 % результатов). Для поиска узких мест используются специальные программы — профайлеры. Утечка ресурсов (памяти, дескрипторов и т.д.) также может привести к падению скорости выполнения программы, для их нахождения также применяются специальные программы (например, BoundsChecker).
Архитектурный дизайн системы особенно сильно влияет на её производительность. Выбор алгоритма влияет на эффективность больше, чем любой другой элемент дизайна. Более сложные алгоритмы и структуры данные могут хорошо оперировать с большим количеством элементов, в то время как простые алгоритмы подходят для небольших объёмов данных — накладные расходы на инициализацию более сложного алгоритма могут перевесить выгоду от его использования.
Чем больше памяти использует программа, тем быстрее она обычно выполняется. Например, программа-фильтр обычно читает каждую строку, фильтрует и выводит эту строку непосредственно. Поэтому она использует память только для хранения одной строки, но её производительность обычно очень плохая. Производительность может быть значительно улучшена чтением целого файла и записью потом отфильтрованного результата, однако этот метод использует больше памяти. Кэширование результата также эффективно, однако требует большего количества памяти для использования.
2. Простейшие приёмы оптимизации программ по затратам процессорного времени
Оптимизация по затратам процессорного времени особенно важна для расчетных программ, в которых большой удельный вес имеют математические вычисления. Здесь перечислены некоторые приемы оптимизации, которые может использовать программист при написании исходного текста программы.
2.1. Инициализация объектов данных
Во многих программах какую-то часть объектов данных необходимо инициализировать, то есть присвоить им начальные значения. Такое присваивание выполняется либо в самом начале программы, либо, например, в конце цикла. Правильная инициализация объектов позволяет сэкономить драгоценное процессорное время. Так, например, если речь идет об инициализации массивов, использование цикла, скорее всего, будет менее эффективным, чем объявление этого массива прямым присвоением.
2.2. Программирование арифметических операций
В том случае, когда значительная часть времени работы программы отводится арифметическим вычислениям, немалые резервы повышения скорости работы программы таятся в правильном программировании арифметических (и логических) выражений. Важно, что различные арифметические операции значительно различаются по быстродействию. В большинстве архитектур, самыми быстрыми являются операции сложения и вычитания. Более медленным является умножение, затем идёт деление. Например, вычисление значения выражения , где a — константа, для аргументов с плавающей точкой производится быстрее в виде , где — константа, вычисляемая на этапе компиляции программы (фактически медленная операция деления заменяется быстрой операцией умножения). Для целочисленного аргумента x вычисление выражения 2x быстрее произвести в виде x + x (операция умножения заменяется операцией сложения) или с использованием операции сдвига влево (что обеспечивает выигрыш не на всех процессорах). Подобные оптимизации называются понижением силы операций. Умножение целочисленных аргументов на константу на процессорах семейства x86 может быть эффективно выполнено с использованием ассемблерных команд LEA, SHL и ADD вместо использования команд MUL/IMUL:
; Исходный операнд в регистре EAX ADD EAX, EAX ; умножение на 2 LEA EAX, [EAX + 2*EAX] ; умножение на 3 SHL EAX, 2 ; умножение на 4 LEA EAX, [4*EAX] ; другой вариант реализации умножения на 4 LEA EAX, [EAX + 4*EAX] ; умножение на 5 LEA EAX, [EAX + 2*EAX] ; умножение на 6 ADD EAX, EAX ; и т.д.Подобные оптимизации являются микроархитектурными и обычно производятся оптимизирующим компилятором прозрачно для программиста.
Относительно много времени тратится на обращение к подпрограммам (передача параметров через стек, сохранение регистров и адреса возврата, вызов конструкторов копирования). Если подпрограмма содержит малое число действий, она может быть реализована подставляемой (англ. inline) — все ее операторы копируются в каждое новое место вызова (существует ряд ограничений на inline-подстановки: например, подпрограмма не должна быть рекурсивной). Это ликвидирует накладные расходы на обращение к подпрограмме, однако ведет к увеличению размера исполняемого файла. Само по себе увеличение размера исполняемого файла не является существенным, однако в некоторых случаях исполняемый код может выйти за пределы кэша команд, что повлечет значительное падение скорости исполнения программы. Поэтому современные оптимизирующие компиляторы обычно имеют настройки оптимизации по размеру кода и по скорости выполнения.
Быстродействие также зависит и от типа операндов. Например, в языке Turbo Pascal, ввиду особенностей реализации целочисленной арифметики, операция сложения оказывается наиболее медленной для операндов типа Byte и ShortInt: несмотря на то, что переменные занимают один байт, арифметические операции для них двухбайтовые и при выполнении операций над этими типами производится обнуление старшего байта регистров и операнд копируется из памяти в младший байт регистра. Это и приводит к дополнительным затратам времени.
Программируя арифметические выражения, следует выбирать такую форму их записи, чтобы количество «медленных» операций было сведено к минимуму. Рассмотрим такой пример. Пусть необходимо вычислить многочлен 4-й степени:
ax4 + bx3 + cx2 + dx + eПри условии, что вычисление степени производится перемножением основания определенное число раз, нетрудно найти, что в этом выражении содержится 10 умножений («медленных» операций) и 4 сложения («быстрых» операций). Это же самое выражение можно записать в виде:
(((ax + b)x + c)x + d)x + eТакая форма записи называется схемой Горнера. В этом выражении 4 умножения и 4 сложения. Общее количество операций сократилось почти в два раза, соответственно уменьшится и время вычисления многочлена. Подобные оптимизации являются алгоритмическими и обычно не выполняется компилятором автоматически.
2.3. Циклы
Различается и время выполнения циклов разного типа. Время выполнения цикла со счетчиком и цикла с постусловием при всех прочих равных условиях совпадает, цикл с предусловием выполняется несколько дольше (примерно на 20-30 %).
При использовании вложенных циклов следует иметь в виду, что затраты процессорного времени на обработку такой конструкции могут зависеть от порядка следования вложенных циклов. Например, вложенный цикл со счетчиком на языке Turbo Pascal:
for j := 1 to 100000 do for k := 1 to 1000 do a := 1; | for j := 1 to 1000 do for k := 1 to 100000 do a := 1; |
Цикл в левой колонке выполняется примерно на 10 % дольше, чем в правой.
На первый взгляд, и в первом, и во втором случае 10 000 000 раз выполняется оператор присваивания, и затраты времени на это должны быть одинаковы в обоих случаях. Но это не так. Объясняется наше наблюдение тем, что инициализации цикла, то есть обработка процессором его заголовка с целью определения начального и конечного значений счётчика, а также шага приращения счётчика требует времени. В первом случае 1 раз инициализируется внешний цикл и 100 000 раз — внутренний, то есть всего выполняется 100 001 инициализация. Во втором случае, как нетрудно подсчитать, таких инициализаций оказывается всего лишь 1001.
Аналогично ведут себя вложенные циклы с предусловием и с постусловием. Можно сделать вывод, что при программировании вложенных циклов по возможности следует делать цикл с наибольшим числом повторений самым внутренним, а цикл с наименьшим числом повторений — самым внешним.
Но, лучших результатов можно добиться, объединив несколько циклов в один, когда такое допустимо. Например:
for(int y=0; y<height; y++) for(int x=0; x<width; x++) put_puxel(x,y,0x00FF00); | for(int i=0,n=width*height; i<n; i++) VRAMptr_dd[i] = 0x00FF00; |
Улучшение за счёт снижения кол-ва цикловых команд, и чем уже width тем эффективней.
Если в циклах содержатся обращения к памяти (обычно при обработке массивов), порядок обхода адресов памяти должен быть по возможности последовательным, что позволяет максимально эффективно использовать кэш и механизм аппаратной предвыборки данных из памяти (англ. Hardware Prefetch). Классическим примером подобной оптимизации является смена порядка следования вложенных циклов при выполнении умножения матриц.
При вычислении сумм часто используются циклы, содержащие одинаковые операции, относящиеся к каждому слагаемому. Это может быть, например, общий множитель (язык Turbo Pascal):
sum := 0; for i := 1 to 1000 do sum := sum + a * x[i]; | sum := 0; for i := 1 to 1000 do sum := sum + x[i]; sum := a * sum; |
Очевидно, что вторая форма записи цикла оказывается более экономной.
2.4. Инвариантные фрагменты кода
Оптимизация инвариантных фрагментов кода тесно связана с проблемой оптимального программирования циклов. Внутри цикла могут встречаться выражения, фрагменты которых никак не зависят от управляющей переменной цикла. Их называют инвариантными фрагментами кода. Современные компиляторы часто определяют наличие таких фрагментов и выполняют их автоматическую оптимизацию. Такое возможно не всегда, и иногда производительность программы зависит целиком от того, как запрограммирован цикл. В качестве примера рассмотрим следующий фрагмент программы (язык Turbo Pascal):
for i := 1 to n do begin ... for k := 1 to p do for m := 1 to q do begin a[k, m] := Sqrt(x * k * m - i) + Abs(u * i - x * m + k); b[k, m] := Sin(x * k * i) + Abs(u * i * m + k); end; ... am := 0; bm := 0; for k := 1 to p do for m := 1 to q do begin am := am + a[k, m] / c[k]; bm := bm + b[k, m] / c[k]; end; end;Здесь инвариантными фрагментами кода являются слагаемое Sin(x * k * i) в первом цикле по переменной m и операция деления на элемент массива c[k] во втором цикле по m. Значения синуса и элемента массива не изменяются в цикле по переменной m, следовательно, в первом случае можно вычислить значение синуса и присвоить его вспомогательной переменной, которая будет использоваться в выражении, находящемся внутри цикла. Во втором случае можно выполнить деление после завершения цикла по m. Таким образом, можно существенно сократить количество трудоёмких арифметических операций.
3. Приоритеты оптимизации
- интерфейсный, т.е.желательно заранее ВСЁ согласовать с другими участниками проекта, включая кому сколько МАКСИМУМ %CPUuse на конкретном ПК.
- PS: ПК не должен быть современным и многопроцессорным... Если такого нет - заведомо сильно ограничить суммарный CPU расход, можно утилитами типа slowcpu; на MP доп.CPU отключая в BIOS/фиксируя все потоки на один CPU (но, это не эквивалент SP, т.к.ОС будет висеть на др.CPU, только для процесса программирования, не конечного тестирования) - исходя из того что релиз будет значительно тормознее ожидаемого, и чем сложнее тема, жёстче сроки, и меньше опыта в теме - тем сильнее... К тому же запас ВСЕГДА нужен ещё и на сколько-то нормальную работу в режиме DEBUG,TRACE
- PS: согласовать и обсудить - не спеша, и каждую мелочь вплоть до того где использовать ООП, а где нет - для ускорения. PS: Подсказка - STL и прч.- не использовать НИГДЕ... С# - аналогично, Скрипты - ТОЛЬКО там где нельзя без них обойтись..., тем более они часто привносят много проблем с багами...
- PS: причём не забыв каждую итерацию теста - искусственно сбрасывать L12 кэши и BTB,... Чтобы соединив все модули затем не удивляться...
- алгоритмический, минус - принцип чем оптимизированней - тем менее понятно, тем больше багов; но это самый эффективный способ, тем более наиболее оптимизируемые алгоритмы уже давно оптимизированы и можно посмотреть на их реализацию.
Этот пункт можно можно разделить на:
- математически-алгоритмический
- логически-алгоритмический
- проче-функционально-алгоритмический, например использования асинхронного исполнения всего что можно
- кэш-оптимизации на уровне алгоритма, включая HW L1,L2,программные-для данных, программные для ресурсов
- использование спецкоманд, например MMX,SSE,... Правда суммарно минусов больше чем плюсов, так как это чисто пиаровские технологии, например трудозатраты (тем более на изучения их работы - 1) на разных архитектурах 2) у разных производителей CPU 3) в разных их моделях...)
PS: но, должен всегда быть вариант кода - без их наличия, в т.ч.для возм.портирования в будущем [возможно другими людьми] и просто для Safe версии исполнимого файла, т.к.некоторые PC-совместимые ПК, тем более лаптопы и прч. - не совсем совместимые и тем более безглючные...
- замена кода на ассемблерный, весьма спорна, т.к.не считая непортированности, и неплохого уровня оптимизации (некоторых) современных компиляторов, чтобы в случае большого объёма кода или применения нестандартных для программирования трюков приводит к очень плачевным результата - ошибкам, источник которые чаще так и не обнаруживается... Но оптимизация тоже имеет право на жизнь, особенно в inline или небольших ф-иях, типа rol и т.п. И особенно если программист хоть сколько знаком с ассемблером и архитектурой ПК, так как ассемблер позволяет иногда ускорить (некоторые) блоки в десятки и сотни раз за счёт визуального представления о функционировании и как следствии оптимизации так чтобы эффективно использовать L1, L2, промах которых на современных ПК исчисляется сотнями тактов.
PS: так же для каждого итерации оптимизации в идеале должен сохраняться неоптимизированный пример просто для понимания алгоритма другими людьми в проекте из тех кто плохо разбирается в подобном, или самому через пару недель/месяцев, просто для тестов на скорость и главное эквивалентность работы с и без такой оптимизации...
Литература
- Jon Bentley. Writing Efficient Programs. ISBN 0-13-970251-2
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 3-е изд. — М.: Вильямс, 2006. — Т. 1: Основные алгоритмы. — 720 с. — ISBN 0-201-89683-4
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 3-е изд. — М.: Вильямс, 2007. — Т. 2: Получисленные алгоритмы. — 832 с. — ISBN 0-201-89684-2
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 2-е изд. — М.: Вильямс, 2007. — Т. 3: Сортировка и поиск. — 824 с. — ISBN 0-201-89685-0
- С. А. Немнюгин. Практикум // Turbo Pascal. — 2-е изд. — СПб.: Питер, 2007. — 268 с. — ISBN 5-94723-702-4
- Крис Касперски. Техника оптимизации программ. Эффективное использование памяти. — СПб.: БХВ-Петербург, 2003. — 464 с. — ISBN 5-94157-232-8
- Intel 64 and IA-32 Architectures Optimization Reference Manual
- AMD Athlon Processor x86 Code Optimization Guide
- http://www.agner.org/optimize/#manuals
wreferat.baza-referat.ru
Оптимизация кода Вики
У этого термина существуют и другие значения, см. Оптимизация.Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью, такой как Интернет.
Хотя целью оптимизации является получение оптимальной системы, истинно оптимальная система в процессе оптимизации достигается далеко не всегда. Оптимизированная система обычно является оптимальной только для одной задачи или группы пользователей: где-то может быть важнее уменьшение времени, требуемого программе для выполнения работы, даже ценой потребления большего объёма памяти; в приложениях, где важнее память, могут выбираться более медленные алгоритмы с меньшими запросами к памяти.
Более того, зачастую не существует универсального решения (хорошо работающего во всех случаях), поэтому инженеры используют компромиссные (англ. tradeoff) решения для оптимизации только ключевых параметров. К тому же, усилия, требуемые для достижения полностью оптимальной программы, которую невозможно дальше улучшить, практически всегда превышают выгоду, которая может быть от этого получена, поэтому, как правило, процесс оптимизации завершается до того, как достигается полная оптимальность. К счастью, в большинстве случаев даже при этом достигаются заметные улучшения.
Оптимизация должна проводиться с осторожностью. Тони Хоар впервые произнёс, а Дональд Кнут впоследствии часто повторял известное высказывание: «Преждевременная оптимизация — это корень всех бед». Очень важно иметь для начала озвученный алгоритм и работающий прототип.
Основы[ | код]
Некоторые задачи часто могут быть выполнены более эффективно. Например, программа на языке Си, которая суммирует все целые числа от 1 до N:
int i, sum = 0; for (i = 1; i <= N; i++) sum += i;Подразумевая, что здесь нет переполнения, этот код может быть переписан в следующем виде с помощью соответствующей математической формулы:
int sum = (N * (N+1)) / 2;Понятие «оптимизация» обычно подразумевает, что система сохраняет ту же самую функциональность. Однако, значительное улучшение производительности часто может быть достигнуто и с помощью удаления избыточной функциональности. Например, если допустить, что программе не требуется поддерживать более, чем 100 элементов при вводе, то возможно использовать статическое выделение памяти вместо более медленного динамического.
Компромиссы (tradeoff)[ | код]
Оптимизация в основном фокусируется на одиночном или повторном времени выполнения, использовании памяти, дискового пространства, пропускной способности или некотором другом ресурсе. Это обычно требует компромиссов — один параметр оптимизируется за счёт других. Например, увеличение размера программного кэша чего-либо улучшает производительность времени выполнения, но также увеличивает потребление памяти. Другие распространённые компромиссы включают прозрачность кода и его выразительность, почти всегда ценой деоптимизации. Сложные специализированные алгоритмы требуют больше усилий по отладке и увеличивают вероятность ошибок.
Различные области[ | код]
В исследовании операций, оптимизация — это проблема определения входных значений функции, при которых она имеет максимальное или минимальное значение. Иногда на эти значения накладываются ограничения, такая задача известна как ограниченная оптимизация.
В программировании, оптимизация обычно обозначает модификацию кода и его настроек компиляции для данной архитектуры для производства более эффективного ПО.
Типичные проблемы имеют настолько большое количество возможностей, что программисты обычно могут позволить использовать только «достаточно хорошее» решение.
Узкие места[ | код]
Для оптимизации требуется найти узкое место (англ. bottleneck - бутылочное горлышко): критическую часть кода, которая является основным потребителем необходимого ресурса. Улучшение примерно 20 % кода иногда влечёт за собой изменение 80 % результатов, согласно принципу Парето. Утечка ресурсов (памяти, дескрипторов и т. д.) также может привести к падению скорости выполнения программы. Для поиска таких утечек используются специальные отладочные инструменты, а для обнаружения узких мест применяются программы — профайлеры.
Архитектурный дизайн системы особенно сильно влияет на её производительность. Выбор алгоритма влияет на эффективность больше, чем любой другой элемент дизайна. Более сложные алгоритмы и структуры данных могут хорошо оперировать с большим количеством элементов, в то время как простые алгоритмы подходят для небольших объёмов данных — накладные расходы на инициализацию более сложного алгоритма могут перевесить выгоду от его использования.
Чем больше памяти использует программа, тем быстрее она обычно выполняется. Например, программа-фильтр обычно читает каждую строку, фильтрует и выводит эту строку непосредственно. Поэтому она использует память только для хранения одной строки, но её производительность обычно очень плохая. Производительность может быть значительно улучшена чтением целого файла и записью потом отфильтрованного результата, однако этот метод использует больше памяти. Кэширование результата также эффективно, однако требует большего количества памяти для использования.
Простейшие приёмы оптимизации программ по затратам процессорного времени[ | код]
Оптимизация по затратам процессорного времени особенно важна для расчетных программ, в которых большой удельный вес имеют математические вычисления. Здесь перечислены некоторые приемы оптимизации, которые может использовать программист при написании исходного текста программы.
Инициализация объектов данных[ | код]
Во многих программах какую-то часть объектов данных необходимо инициализировать, то есть присвоить им начальные значения. Такое присваивание выполняется либо в самом начале программы, либо, например, в конце цикла. Правильная инициализация объектов позволяет сэкономить драгоценное процессорное время. Так, например, если речь идет об инициализации массивов, использование цикла, скорее всего, будет менее эффективным, чем объявление этого массива прямым присвоением.
Программирование арифметических операций[ | код]
В том случае, когда значительная часть времени работы программы отводится арифметическим вычислениям, немалые резервы повышения скорости работы программы таятся в правильном программировании арифметических (и логических) выражений. Важно, что различные арифметические операции значительно различаются по быстродействию. В большинстве архитектур, самыми быстрыми являются операции сложения и вычитания. Более медленным является умножение, затем идёт деление. Например, вычисление значения выражения xa{\displaystyle {\frac {x}{a}}}, где a{\displaystyle a} — константа, для аргументов с плавающей точкой производится быстрее в виде x⋅b{\displaystyle x\cdot b}, где b=1a{\displaystyle b={\frac {1}{a}}} — константа, вычисляемая на этапе компиляции программы (фактически медленная операция деления заменяется быстрой операцией умножения). Для целочисленного аргумента x{\displaystyle x} вычисление выражения 2x{\displaystyle 2x} быстрее произвести в виде x+x{\displaystyle x+x} (операция умножения заменяется операцией сложения) или с использованием операции сдвига влево (что обеспечивает выигрыш не на всех процессорах). Подобные оптимизации называются понижением силы операций. Умножение целочисленных аргументов на константу на процессорах семейства x86 может быть эффективно выполнено с использованием ассемблерных команд LEA, SHL и ADD вместо использования команд MUL/IMUL:
; Исходный операнд в регистре EAX ADD EAX, EAX ; умножение на 2 LEA EAX, [EAX + 2*EAX] ; умножение на 3 SHL EAX, 2 ; умножение на 4 LEA EAX, [4*EAX] ; другой вариант реализации умножения на 4 LEA EAX, [EAX + 4*EAX] ; умножение на 5 LEA EAX, [EAX + 2*EAX] ; умножение на 6 ADD EAX, EAX ; и т.д.Подобные оптимизации являются микроархитектурными и обычно производятся оптимизирующим компилятором прозрачно для программиста.
Относительно много времени тратится на обращение к подпрограммам (передача параметров через стек, сохранение регистров и адреса возврата, вызов конструкторов копирования). Если подпрограмма содержит малое число действий, она может быть реализована подставляемой (англ. inline) — все её операторы копируются в каждое новое место вызова (существует ряд ограничений на inline-подстановки: например, подпрограмма не должна быть рекурсивной). Это ликвидирует накладные расходы на обращение к подпрограмме, однако ведет к увеличению размера исполняемого файла. Само по себе увеличение размера исполняемого файла не является существенным, однако в некоторых случаях исполняемый код может выйти за пределы кэша команд, что повлечет значительное падение скорости исполнения программы. Поэтому современные оптимизирующие компиляторы обычно имеют настройки оптимизации по размеру кода и по скорости выполнения.
Быстродействие также зависит и от типа операндов. Например, в языке Turbo Pascal, ввиду особенностей реализации целочисленной арифметики, операция сложения оказывается наиболее медленной для операндов типа Byte и ShortInt: несмотря на то, что переменные занимают один байт, арифметические операции для них двухбайтовые и при выполнении операций над этими типами производится обнуление старшего байта регистров и операнд копируется из памяти в младший байт регистра. Это и приводит к дополнительным затратам времени.
Программируя арифметические выражения, следует выбирать такую форму их записи, чтобы количество «медленных» операций было сведено к минимуму. Рассмотрим такой пример. Пусть необходимо вычислить многочлен 4-й степени:
ax4+bx3+cx2+dx+e{\displaystyle ax^{4}+bx^{3}+cx^{2}+dx+e}При условии, что вычисление степени производится перемножением основания определенное число раз, нетрудно найти, что в этом выражении содержится 10 умножений («медленных» операций) и 4 сложения («быстрых» операций). Это же самое выражение можно записать в виде:
(((ax+b)x+c)x+d)x+e{\displaystyle (((ax+b)x+c)x+d)x+e}Такая форма записи называется схемой Горнера. В этом выражении 4 умножения и 4 сложения. Общее количество операций сократилось почти в два раза, соответственно уменьшится и время вычисления многочлена. Подобные оптимизации являются алгоритмическими и обычно не выполняются компилятором автоматически.
Циклы[ | код]
Различается и время выполнения циклов разного типа. Время выполнения цикла со счетчиком и цикла с постусловием при всех прочих равных условиях , цикл с предусловием выполняется несколько дольше (примерно на 20-30 %).
При использовании вложенных циклов следует иметь в виду, что затраты процессорного времени на обработку такой конструкции могут зависеть от порядка следования вложенных циклов. Например, вложенный цикл со счетчиком на языке Turbo Pascal:
for j := 1 to 100000 do for k := 1 to 1000 do a := 1; | for j := 1 to 1000 do for k := 1 to 100000 do a := 1; |
Цикл в левой колонке выполняется примерно на 10 % дольше, чем в правой.
На первый взгляд, и в первом, и во втором случае 100 000 000 раз выполняется оператор присваивания и затраты времени на это должны быть одинаковы в обоих случаях. Но это не так. Объясняется это тем, что инициализации цикла (обработка процессором его заголовка с целью определения начального и конечного значений счётчика, а также шага приращения счётчика) требует времени. В первом случае 1 раз инициализируется внешний цикл и 100 000 раз — внутренний, то есть всего выполняется 100 001 инициализация. Во втором случае таких инициализаций оказывается всего лишь 1001.
Аналогично ведут себя вложенные циклы с предусловием и с постусловием. Можно сделать вывод, что при программировании вложенных циклов по возможности следует делать цикл с наименьшим числом повторений самым внешним, а цикл с наибольшим числом повторений — самым внутренним.
Если в циклах содержатся обращения к памяти (обычно при обработке массивов), для максимально эффективного использования кэша и механизма аппаратной предвыборки данных из памяти (англ. Hardware Prefetch) порядок обхода адресов памяти должен быть по возможности последовательным. Классическим примером подобной оптимизации является смена порядка следования вложенных циклов при выполнении умножения матриц.
При вычислении сумм часто используются циклы, содержащие одинаковые операции, относящиеся к каждому слагаемому. Это может быть, например, общий множитель (язык Turbo Pascal):
sum := 0; for i := 1 to 1000 do sum := sum + a * x[i]; | sum := 0; for i := 1 to 1000 do sum := sum + x[i]; sum := a * sum; |
Вторая форма записи цикла оказывается более экономной.
Инвариантные фрагменты кода[ | код]
Оптимизация инвариантных фрагментов кода тесно связана с проблемой оптимального программирования циклов. Внутри цикла могут встречаться выражения, фрагменты которых никак не зависят от управляющей переменной цикла. Их называют инвариантными фрагментами кода. Современные компиляторы часто определяют наличие таких фрагментов и выполняют их автоматическую оптимизацию. Такое возможно не всегда, и иногда производительность программы зависит целиком от того, как запрограммирован цикл. В качестве примера рассмотрим следующий фрагмент программы (язык Turbo Pascal):
for i := 1 to n do begin ... for k := 1 to p do for m := 1 to q do begin a[k, m] := Sqrt(x * k * m - i) + Abs(u * i - x * m + k); b[k, m] := Sin(x * k * i) + Abs(u * i * m + k); end; ... am := 0; bm := 0; for k := 1 to p do for m := 1 to q do begin am := am + a[k, m] / c[k]; bm := bm + b[k, m] / c[k]; end; end;Здесь инвариантными фрагментами кода являются слагаемое Sin(x * k * i) в первом цикле по переменной m и операция деления на элемент массива c[k] во втором цикле по m. Значения синуса и элемента массива не изменяются в цикле по переменной m, следовательно, в первом случае можно вычислить значение синуса и присвоить его вспомогательной переменной, которая будет использоваться в выражении, находящемся внутри цикла. Во втором случае можно выполнить деление после завершения цикла по m. Таким образом, можно существенно сократить количество трудоёмких арифметических операций.
См. также[ | код]
Литература[ | код]
Ссылки[ | код]
ru.wikibedia.ru
java - Оптимизация кода Java, оптимизирует ли это
Чтобы ответить на ваш вопрос, когда выполняется scanner.nextLine().indexOf(searchString); что вы ожидаете nextLine()? И на каком объекте вы ожидаете выполнения indexOf()?
Как вы, наверное, догадались, он полагается на String; поэтому да, этот String создан и да, этот String используется. Это (вопреки вашей догадке) необходимо.
Операция объявления переменной (String s) и назначения значения ничего не стоит по сравнению с созданием объекта (new String("test")).
Другими словами, то, что вы пытаетесь достичь, не является ни полезным, ни значительно более эффективным.
Здесь есть вторая проблема, более глубокая проблема для разработчиков в целом. Пытаясь сделать оптимизацию на таком виде кода, не столкнувшись с реальной проблемой и без какого-либо очевидного признака того, что этот код может заставить ваше приложение работать значительно медленнее, просто преждевременно.
В большинстве случаев это отвлекает вас от того, чего вы хотите достичь, и заставит вас писать нечитаемый код ради оптимизации (возможно, это даже не оптимизация!).
В вашем конкретном случае (я удивлен, что никто не упоминал об этом раньше, и именно поэтому я пишу этот ответ), ваш "оптимизированный" код сделает всех хуже.
Представьте, что ваш код запущен, а в какой-то точке все терпит неудачу, и вы получите NullPointerException в этой строке:
result = scanner.nextLine().indexOf(searchString) >= 0;Вместо того, чтобы иметь четкое представление о том, что вам не удается, вам нужно вручную отладить этот код, чтобы узнать, есть ли scanner null или если по какой-то причине nextLine() возвращает null.
Эта проблема даже не существовала в вашем предыдущем коде, но это стремление к оптимизации на раннем этапе и попытка сделать ваш код более компактным, чтобы избежать перетаскивания нескольких операций, теперь сделали ваш код во всем мире хуже.
qaru.site
Оптимизация (информатика) - это... Что такое Оптимизация (информатика)?
Эта статья об оптимизации программ и данных вообще; об оптимизациях, применяемых компиляторами см.: Оптимизация компилятора. У этого термина существуют и другие значения, см. Оптимизация.Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, набором компьютеров или даже целой сетью, такой как Интернет.
Хотя целью оптимизации является получение оптимальной системы, истинно оптимальная система в процессе оптимизации достигается далеко не всегда. Оптимизированная система обычно является оптимальной только для одной задачи или группы пользователей: где-то может быть важнее уменьшение времени, требуемого программе для выполнения работы, даже ценой потребления большего объёма памяти; в приложениях, где важнее память, могут выбираться более медленные алгоритмы с меньшими запросами к памяти.
Более того, зачастую не существует универсального решения, которое работает хорошо во всех случаях, поэтому инженеры используют компромиссные (англ. tradeoff) решения для оптимизации только ключевых параметров. К тому же, усилия, требуемые для достижения полностью оптимальной программы, которую невозможно дальше улучшить, практически всегда превышают выгоду, которая может быть от этого получена, поэтому, как правило, процесс оптимизации завершается до того, как достигается полная оптимальность. К счастью, в большинстве случаев даже при этом достигаются заметные улучшения.
Оптимизация должна проводиться с осторожностью. Тони Хоар впервые произнёс, а Дональд Кнут впоследствии часто повторял известное высказывание: «Преждевременная оптимизация — это корень всех бед». Очень важно иметь для начала озвученный алгоритм и работающий прототип.
Основы
Некоторые задачи часто могут быть выполнены более эффективно. Например, программа на языке Си, которая суммирует все целые числа от 1 до N:
int i, sum = 0; for (i = 1; i <= N; i++) sum += i;Подразумевая, что здесь нет переполнения, этот код может быть переписан в следующем виде с помощью соответствующей математической формулы:
int sum = (N * (N+1)) / 2;Понятие «оптимизация» обычно подразумевает, что система сохраняет ту же самую функциональность. Однако, значительное улучшение производительности часто может быть достигнуто и с помощью удаления избыточной функциональности. Например, если допустить, что программе не требуется поддерживать более, чем 100 элементов при вводе, то возможно использовать статическое выделение памяти вместо более медленного динамического.
Компромиссы (tradeoff)
Оптимизация в основном фокусируется на одиночном или повторном времени выполнения, использовании памяти, дискового пространства, пропускной способности или некотором другом ресурсе. Это обычно требует компромиссов — один параметр оптимизируется за счёт других. Например, увеличение размера программного кеша чего-либо улучшает производительность времени выполнения, но также увеличивает потребление памяти. Другие распространённые компромиссы включают прозрачность кода и его выразительность, почти всегда ценой деоптимизации. Сложные специализированные алгоритмы требуют больше усилий по отладке и увеличивают вероятность ошибок.
Различные области
В исследовании операций, оптимизация — это проблема определения входных значений функции, при которых она имеет максимальное или минимальное значение. Иногда на эти значения накладываются ограничения, такая задача известна как ограниченная оптимизация.
В программировании, оптимизация обычно обозначает модификацию кода и его настроек компиляции для данной архитектуры для производства более эффективного ПО.
Типичные проблемы имеют настолько большое количество возможностей, что программисты обычно могут позволить использовать только «достаточно хорошее» решение.
Узкие места
Для оптимизации требуется найти узкое место (англ. bottleneck - бутылочное горлышко): критическую часть кода, которая является основным потребителем необходимого ресурса. Улучшение примерно 20 % кода иногда влечёт за собой изменение 80 % результатов (см. также принцип Парето). Для поиска узких мест используются специальные программы — профайлеры. Утечка ресурсов (памяти, дескрипторов и т. д.) также может привести к падению скорости выполнения программы, для их нахождения также применяются специальные программы (например, BoundsChecker (англ.)).
Архитектурный дизайн системы особенно сильно влияет на её производительность. Выбор алгоритма влияет на эффективность больше, чем любой другой элемент дизайна. Более сложные алгоритмы и структуры данных могут хорошо оперировать с большим количеством элементов, в то время как простые алгоритмы подходят для небольших объёмов данных — накладные расходы на инициализацию более сложного алгоритма могут перевесить выгоду от его использования.
Чем больше памяти использует программа, тем быстрее она обычно выполняется. Например, программа-фильтр обычно читает каждую строку, фильтрует и выводит эту строку непосредственно. Поэтому она использует память только для хранения одной строки, но её производительность обычно очень плохая. Производительность может быть значительно улучшена чтением целого файла и записью потом отфильтрованного результата, однако этот метод использует больше памяти. Кэширование результата также эффективно, однако требует большего количества памяти для использования.
Простейшие приёмы оптимизации программ по затратам процессорного времени
Оптимизация по затратам процессорного времени особенно важна для расчетных программ, в которых большой удельный вес имеют математические вычисления. Здесь перечислены некоторые приемы оптимизации, которые может использовать программист при написании исходного текста программы.
Инициализация объектов данных
Во многих программах какую-то часть объектов данных необходимо инициализировать, то есть присвоить им начальные значения. Такое присваивание выполняется либо в самом начале программы, либо, например, в конце цикла. Правильная инициализация объектов позволяет сэкономить драгоценное процессорное время. Так, например, если речь идет об инициализации массивов, использование цикла, скорее всего, будет менее эффективным, чем объявление этого массива прямым присвоением.
Программирование арифметических операций
В том случае, когда значительная часть времени работы программы отводится арифметическим вычислениям, немалые резервы повышения скорости работы программы таятся в правильном программировании арифметических (и логических) выражений. Важно, что различные арифметические операции значительно различаются по быстродействию. В большинстве архитектур, самыми быстрыми являются операции сложения и вычитания. Более медленным является умножение, затем идёт деление. Например, вычисление значения выражения , где — константа, для аргументов с плавающей точкой производится быстрее в виде , где — константа, вычисляемая на этапе компиляции программы (фактически медленная операция деления заменяется быстрой операцией умножения). Для целочисленного аргумента вычисление выражения быстрее произвести в виде (операция умножения заменяется операцией сложения) или с использованием операции сдвига влево (что обеспечивает выигрыш не на всех процессорах). Подобные оптимизации называются понижением силы операций. Умножение целочисленных аргументов на константу на процессорах семейства x86 может быть эффективно выполнено с использованием ассемблерных команд LEA, SHL и ADD вместо использования команд MUL/IMUL:
; Исходный операнд в регистре EAX ADD EAX, EAX ; умножение на 2 LEA EAX, [EAX + 2*EAX] ; умножение на 3 SHL EAX, 2 ; умножение на 4 LEA EAX, [4*EAX] ; другой вариант реализации умножения на 4 LEA EAX, [EAX + 4*EAX] ; умножение на 5 LEA EAX, [EAX + 2*EAX] ; умножение на 6 ADD EAX, EAX ; и т.д.Подобные оптимизации являются микроархитектурными и обычно производятся оптимизирующим компилятором прозрачно для программиста.
Относительно много времени тратится на обращение к подпрограммам (передача параметров через стек, сохранение регистров и адреса возврата, вызов конструкторов копирования). Если подпрограмма содержит малое число действий, она может быть реализована подставляемой (англ. inline) — все её операторы копируются в каждое новое место вызова (существует ряд ограничений на inline-подстановки: например, подпрограмма не должна быть рекурсивной). Это ликвидирует накладные расходы на обращение к подпрограмме, однако ведет к увеличению размера исполняемого файла. Само по себе увеличение размера исполняемого файла не является существенным, однако в некоторых случаях исполняемый код может выйти за пределы кэша команд, что повлечет значительное падение скорости исполнения программы. Поэтому современные оптимизирующие компиляторы обычно имеют настройки оптимизации по размеру кода и по скорости выполнения.
Быстродействие также зависит и от типа операндов. Например, в языке Turbo Pascal, ввиду особенностей реализации целочисленной арифметики, операция сложения оказывается наиболее медленной для операндов типа Byte и ShortInt: несмотря на то, что переменные занимают один байт, арифметические операции для них двухбайтовые и при выполнении операций над этими типами производится обнуление старшего байта регистров и операнд копируется из памяти в младший байт регистра. Это и приводит к дополнительным затратам времени.
Программируя арифметические выражения, следует выбирать такую форму их записи, чтобы количество «медленных» операций было сведено к минимуму. Рассмотрим такой пример. Пусть необходимо вычислить многочлен 4-й степени:
При условии, что вычисление степени производится перемножением основания определенное число раз, нетрудно найти, что в этом выражении содержится 10 умножений («медленных» операций) и 4 сложения («быстрых» операций). Это же самое выражение можно записать в виде:
Такая форма записи называется схемой Горнера. В этом выражении 4 умножения и 4 сложения. Общее количество операций сократилось почти в два раза, соответственно уменьшится и время вычисления многочлена. Подобные оптимизации являются алгоритмическими и обычно не выполняется компилятором автоматически.
Циклы
Различается и время выполнения циклов разного типа. Время выполнения цикла со счетчиком и цикла с постусловием при всех прочих равных условиях совпадает, цикл с предусловием выполняется несколько дольше (примерно на 20-30 %).
При использовании вложенных циклов следует иметь в виду, что затраты процессорного времени на обработку такой конструкции могут зависеть от порядка следования вложенных циклов. Например, вложенный цикл со счетчиком на языке Turbo Pascal:
for j := 1 to 100000 do for k := 1 to 1000 do a := 1; | for j := 1 to 1000 do for k := 1 to 100000 do a := 1; |
Цикл в левой колонке выполняется примерно на 10 % дольше, чем в правой.
На первый взгляд, и в первом, и во втором случае 10 000 000 раз выполняется оператор присваивания и затраты времени на это должны быть одинаковы в обоих случаях. Но это не так. Объясняется это тем, что инициализации цикла (обработка процессором его заголовка с целью определения начального и конечного значений счётчика, а также шага приращения счётчика) требует времени. В первом случае 1 раз инициализируется внешний цикл и 100 000 раз — внутренний, то есть всего выполняется 100 001 инициализация. Во втором случае таких инициализаций оказывается всего лишь 1001.
Аналогично ведут себя вложенные циклы с предусловием и с постусловием. Можно сделать вывод, что при программировании вложенных циклов по возможности следует делать цикл с наибольшим числом повторений самым внутренним, а цикл с наименьшим числом повторений — самым внешним.
Если в циклах содержатся обращения к памяти (обычно при обработке массивов), для максимально эффективного использования кэша и механизма аппаратной предвыборки данных из памяти (англ. Hardware Prefetch) порядок обхода адресов памяти должен быть по возможности последовательным. Классическим примером подобной оптимизации является смена порядка следования вложенных циклов при выполнении умножения матриц.
При вычислении сумм часто используются циклы, содержащие одинаковые операции, относящиеся к каждому слагаемому. Это может быть, например, общий множитель (язык Turbo Pascal):
sum := 0; for i := 1 to 1000 do sum := sum + a * x[i]; | sum := 0; for i := 1 to 1000 do sum := sum + x[i]; sum := a * sum; |
Вторая форма записи цикла оказывается более экономной.
Инвариантные фрагменты кода
Оптимизация инвариантных фрагментов кода тесно связана с проблемой оптимального программирования циклов. Внутри цикла могут встречаться выражения, фрагменты которых никак не зависят от управляющей переменной цикла. Их называют инвариантными фрагментами кода. Современные компиляторы часто определяют наличие таких фрагментов и выполняют их автоматическую оптимизацию. Такое возможно не всегда, и иногда производительность программы зависит целиком от того, как запрограммирован цикл. В качестве примера рассмотрим следующий фрагмент программы (язык Turbo Pascal):
for i := 1 to n do begin ... for k := 1 to p do for m := 1 to q do begin a[k, m] := Sqrt(x * k * m - i) + Abs(u * i - x * m + k); b[k, m] := Sin(x * k * i) + Abs(u * i * m + k); end; ... am := 0; bm := 0; for k := 1 to p do for m := 1 to q do begin am := am + a[k, m] / c[k]; bm := bm + b[k, m] / c[k]; end; end;Здесь инвариантными фрагментами кода являются слагаемое Sin(x * k * i) в первом цикле по переменной m и операция деления на элемент массива c[k] во втором цикле по m. Значения синуса и элемента массива не изменяются в цикле по переменной m, следовательно, в первом случае можно вычислить значение синуса и присвоить его вспомогательной переменной, которая будет использоваться в выражении, находящемся внутри цикла. Во втором случае можно выполнить деление после завершения цикла по m. Таким образом, можно существенно сократить количество трудоёмких арифметических операций.
См. также
Литература
- Jon Bentley. Writing Efficient Programs. ISBN 0-13-970251-2
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 3-е изд. — М.: Вильямс, 2006. — Т. 1: Основные алгоритмы. — 720 с. — ISBN 0-201-89683-4
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 3-е изд. — М.: Вильямс, 2007. — Т. 2: Получисленные алгоритмы. — 832 с. — ISBN 0-201-89684-2
- Дональд Кнут. Искусство программирования = The Art of Computer Programming. — 2-е изд. — М.: Вильямс, 2007. — Т. 3: Сортировка и поиск. — 824 с. — ISBN 0-201-89685-0
- С. А. Немнюгин. Практикум // Turbo Pascal. — 2-е изд. — СПб.: Питер, 2007. — 268 с. — ISBN 5-94723-702-4
- Крис Касперски. Техника оптимизации программ. Эффективное использование памяти. — СПб.: БХВ-Петербург, 2003. — 464 с. — ISBN 5-94157-232-8
Ссылки
dic.academic.ru